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A B S T R A C T

During pregnancy, maternal lead from earlier exposures mobilizes and crosses placental barriers, placing the
developing fetus at risk for lead exposure and neurodevelopmental deficits. Some neuronal circuits known to be
affected in neurodevelopment disorders can be probed with simple physiological behavioral paradigms. One
such neural biomarker is Pre-Pulse Inhibition (PPI), an indicator of adequate sensorimotor gating processing. In
clinical studies, deficits in PPI have been associated with neurodevelopmental disorders in human subjects. To
our knowledge, no studies have examined the use of PPI as a biomarker of toxicant effects on the brain in
epidemiological studies. We aimed to estimate the causal effect of prenatal lead exposure, assessed by maternal
cortical bone lead concentrations, on PPI in 279 children from Mexico City. in vivo maternal cortical bone lead
measurements were taken at four weeks postpartum at the mid-tibia shaft using a K-Shell X-ray fluorescence
instrument. PPI recording occurred in an isolated clinical setting and eye blink responses were measured using
electromyography. We assessed if the conditions for causal inference held in our study and used the results of our
assessment to estimate the causal effect of prenatal lead exposure on PPI using an ordinary least squares re-
gression model, a marginal structural model, and the parametric g-formula. Results were consistent across the
three modeling approaches. For the parametric g-formula, a one standard deviation (10.0 μg/g) increase in
prenatal lead significantly reduced PPI by approximately 19.0 % (95 % CI: 5.4 %, 34.3 %). This decrease is
similar in magnitude to clinical studies on schizophrenia, which have observed PPI impairments in patients with
schizophrenia as compared to controls. Our results are consistent with findings from other studies establishing an
association between lead exposure and neurodevelopmental disorders in children and suggest that PPI may be
useful as an objective biomarker of toxicant effects on the brain.

1. Introduction

Lead is a highly toxic heavy metal known to interfere with brain
development in children (Hong et al., 2014; Lidsky and Schneider,
2003). In pregnant women, lead from earlier exposures can be released
into the bloodstream, which can subsequently cross the placenta and
place the developing fetus at risk for lead-related neurobehavioral
deficits (Bornschein et al., 1977; Korpela et al., 1986; Lidsky and

Schneider, 2003; Manton et al., 2003). After exposure, lead crosses the
blood brain barrier and deposits in the developing fetus’s brain, pri-
marily because of its ability to substitute for calcium. There, it can alter
the behavior of endothelial cells in the immature brain and disrupt the
blood brain barrier, as well as directly interfere with neuronal signaling
(Sanders et al., 2009). Research findings have suggested that prenatal
lead exposure is associated with reduced cognition (Howard Hu et al.,
2006; Schnaas et al., 2006; Wasserman et al., 2000), attention
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(Wasserman et al., 2000), and altered auditory and retinal function
(Dietrich et al., 1992; Rothenberg et al., 2000; Wasserman et al., 2000)
in children.

Specific neuronal circuits known to be affected in several neuro-
development disorders can be probed with simple physiological beha-
vioral paradigms, potentially serving as a marker of neurobehavioral
impairments associated with exposure to environmental metals
(Rowland et al., 2002). One such measure is pre-pulse inhibition (PPI),
a sensorimotor gating process that can modify the acoustic startle reflex
(ASR) under different behavioral conditions (e.g. during attention tasks;
Hawk W. Larry, Pelham E. William, & Yartz R. Andrew, 2002). The ASR
is a cross-species, whole-body reflex in response to a loud and un-
expected sound that has been well characterized as an element of a
defensive response to stressful stimuli (Le Duc et al., 2016). The ASR is
attenuated when a quieter, non-startling sound (a “prepulse”) is pre-
sented 30–500 milliseconds (ms) before the startle probe (D. L. Braff
et al., 2001). This attenuation, termed PPI, is an indication of early
automatic attention regulation of environmental stimuli (Le Duc et al.,
2016). Since PPI indicates adequate organization of human cognitive
processes, it has been proposed that PPI deficits can be used as a neu-
robiological marker for pathologies indicative of inadequate motor or
sensory gating such as observed in schizophrenia and other neurode-
velopmental disorders (D. Braff et al., 1978; De la Casa et al., 2016). In
children, PPI deficits are associated with neurodevelopmental disorders
such as early psychosis, Tourette’s syndrome, primary nocturnal enur-
esis (Takahashi et al., 2011), and DiGeorge syndrome (Sobin et al.,
2005).

Although PPI’s relevance for neurodevelopmental disorders has
been established, its relationship with environmental neurotoxicants
such as lead has not been epidemiologically explored. Yet, by probing
underlying neurobiology, PPI offers the potential to identify neurolo-
gical deficits associated with neurotoxicant exposures. Moreover, as an
indicator of the underlying biological processes possibly implicated in
neurodevelopmental disorders, PPI may be able to identify deficits
earlier using more objective measures than behavioral ratings and can
be more cost-effective than current brain imaging techniques for as-
sessing the neurobiology of these disorders in larger epidemiological
samples.

To our knowledge, no studies have examined the effect of prenatal
lead exposure on PPI in children. The objective of this study was to
estimate the causal effect of prenatal lead exposure on PPI. To do so, we
emulated a randomized control trial of prenatal lead exposure in a
cohort of children 8–17 years of age from Mexico City. We applied
traditional least squares regression models, marginal structural models,
and the parametric g-formula to estimate the effect of prenatal lead
exposure on PPI in children and compared the consistency of our effect
estimates across the three modeling approaches.

2. Methods

2.1. Study population

The Early life Exposure in Mexico to Environmental Toxicants
(ELEMENT) cohort consists of three sequential birth cohorts of mother-
infant pairs from Mexico City maternal hospitals that have been fol-
lowed for over two decades to understand health effects associated with
environmental exposures to metals and chemicals (Téllez-Rojo et al.,
2006). Pertinent details of ELEMENT, such as inclusion and exclusion
criteria, collection methods, and demographics have been reported in
detail elsewhere (Afeiche et al., 2011; Téllez-Rojo et al., 2006). In brief,
2098 pregnant women were recruited from prenatal clinics in Mexico
City, a catchment population of low-to-middle income individuals for-
merly employed in the private sector. Cohort I was recruited from 1994
to 1997, Cohort II from 1997 to 2000, and Cohort III from 2001 to
2005. The ELEMENT cohort consists of the 2098 mothers and 1710
children. Between 2008 and 2011, 827 children participated in a

follow-up study on heavy metals and attention behaviors. Of these 827
participants, 415 children 8–17 years old subsequently participated in
the current PPI sub-study approximately 18 months later.

The research protocol for this study was carried out in accordance
with the Declaration of Helsinki and approved by the ethics and re-
search committees of the partnering institutions, including the National
Institute of Public Health of Mexico, Harvard T.H. Chan School of
Public Health, Brigham and Women’s Hospital, the University of
Michigan School Of Public Health, the University of Washington, and
other participating hospitals. Informed consent was obtained from each
participant.

2.2. Exposure assessment

Prenatal blood lead measurements were only available for mothers
in Cohort III and a fraction of mothers in Cohort II. As such, we assessed
prenatal lead exposure by using cortical bone lead (μg/g of bone mi-
neral) measured at 4 weeks postpartum (±5 days) at the mid-tibial
cortical bone shaft in mothers. Although trabecular bone lead was
measured at the same time for mothers, our analyses focus on cortical
bone lead as it has been highlighted as the more reliable measure of
prenatal lead exposure, due to the high turnover expected with trabe-
cular bone lead during and after pregnancy (Afeiche et al., 2011; Ho-
ward Hu et al., 2006). We use the term “prenatal lead” to refer to
cortical bone lead measurements in subsequent sections of this article.

Bone lead was measured non-invasively using a spot-source 109Cd-
based K-shell X-ray fluorescence (K-XRF) instrument maintained at
Harvard University and installed in a research facility in the American
British Cowdray Medical Center in Mexico City. The physical principles,
technical specifications, and validation of this and other similar K-XRF
instruments have been described previously (Aro et al., 1994; Burger
et al., 1990; Hu et al., 1998).

2.3. Covariate information

ELEMENT has detailed information on maternal, child, and familial
characteristics dating back to pregnancy. In addition, we collected
updated questionnaire-based information on maternal marital status,
parental education levels, and family socioeconomic status at recruit-
ment for the child follow-up study. The socioeconomic questionnaire
asked about the availability of certain items and assets in the home
(number of light bulbs in the home, rooms in the house, bathrooms,
cars, personal computer, water heater, electrical appliances [video/
DVD player, washing machine, vacuum cleaner, toaster, microwave],
and the type of house floor). Point values were assigned to each item,
and the socioeconomic status level was calculated based on the sum of
the points across all items (Huang et al., 2015). This approach was
developed by the Asociación Mexicana de Agencias de Investigación de
Mercados y Opinión Pública (Carrasco, 2002).

2.4. PPI experimental design

The specifics of this startle procedure are based on those previously
used in assessment of attentional modulation of PPI in children and
adolescents (Hawk et al., 2003; Hawk W. Larry et al., 2002). Before the
trials, participants were placed in an isolated clinical setting and surface
electrodes were placed over each child’s orbicularis oculi muscle to
measure eye blink response. Acoustic stimuli were delivered through
headphones, where background white noise of 70 dB was played con-
tinuously. An initial series of two different tones were presented over
the headphones and each child was instructed to discriminate between
high (1200 Hz) and low (400 Hz) pitches, and short (5 s) and long (8 s)
tones in random order. The discrimination exercise was repeated until
each participant responded correctly to six consecutive stimuli to en-
sure that each child could discriminate the differences.

After the discrimination exercise, the experiment commenced and
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ran continuously until completion as a continuous recording. A sub-
sequent session immediately following the discrimination exercise
consisted of the presentation of a series of tones each followed by an
inter-trial interval (ITI) during which no tones were presented, with the
two-tone pitches (400 Hz and 1200 Hz) and lengths (5 s and 8 s) pre-
sented in pseudo-randomized order to counterbalance tone order. The
child was instructed to attend to one of the pre-pulse tones (target as
either high or low pitch selected randomly) and to ignore the other
(non-target). Participants were instructed to press a button at the end of
all the longer (8 s) presentations of the attended (target) pre-pulse tone.
Startle probes at 102 dB were presented during some of the pre-pulse
tones and during some of the ITIs. The length of the ITIs was either 15,
22, or 29 s long and startle probes were presented 7, 11, 14 s into those
intervals, respectively. Each child was exposed to 12 startle probes that
appeared in pseudorandom order with respect to target, non-target, or
ITI. In total, there were six trials with target tones, six trials with non-
target tones, and 12 ITIs. For the target and non-target tones, startle
probes were presented either 120 or 240ms after the start of the target
or non-target tone (stimulus onset asynchrony or SOA). Over the whole
session a total of four startle probes were presented during each of the
conditions (target tone, non-target tone, or ITI).

2.5. Signal recording and electromyography data processing

The specifics of signal recording electromyography (EMG) data
processing for this study were consistent with guidelines outlined by
Blumenthal et al. for human startle eye blink electromyography studies
(Blumenthal et al., 2005). Eye blink responses to startle stimuli were
recorded using a bipolar configuration of 3mm Ag-AgCl surface elec-
trodes filled with Microlyte Gel (Coulbourn, Allentown PA) secured by
adhesive collars positioned over the orbicularis oculi muscle beneath
the lower eyelid, one below and in line with the pupil in a forward gaze
and the other 1−2 cm lateral to the first. The startle delivery and re-
sponse recording system (Coulbourn Instruments, Allentown, PA) was
connected to a personal computer that ran the control software (Su-
perLab, BioPac, Goleta, CA). Electrode impedances were held to 10
KOhms and the raw electromyography (EMG) signal was amplified and
digitally sampled at 1000 Hz using AcqKnowledge software (Biopac,
Goleta, CA). Sampling started immediately before the experimental
block was started and lasted until the end of it (continuous recording).

Eyeblink EMG responses were digitally integrated (low-pass filtered
between 1.0 and 500 Hz), rectified and smoothed digitally using
AcqKnowledge software (Biopac, Goleta, CA). All trials were visually
inspected for excessive noise in the EMG signal and for any software
malfunctions. Startle responses were defined as the change from base-
line to highest amplitude in microvolt within 20–200 milliseconds (ms)
after probe onset using a computer peak amplitude detection algorithm
of the AcqKnowledge software system. Trials were considered invalid
and rejected if 1) a response onset was less than 21ms; or 2) a response
peak was greater than 200ms after probe onset. The test-retest relia-
bility of baseline startle amplitudes and percent PPI (as examined and
described above) has been shown to be high in a study of 9−12 year old
boys (intra-class correlation coefficients of 0.94 and 0.90, respectively
in PPI sessions separated by a week (Hawk et al., 2002).

2.6. Statistical analyses

2.6.1. General analytical methods
Of the 415 children who participated in the PPI sub-study, 70

children were excluded from the final analysis due to software mal-
functions during signal recording. Among the remaining 345 children,
364 trials (8.8 % of all trials) were excluded because the response onset
was less than 21ms and 130 trials (3.1 % of all trials) were excluded
because the response peak was greater than 200ms after probe onset.
Of the 345 remaining children, 279 children had complete information
on maternal cortical bone lead measurements. Our final study

population was restricted to 279 children who participated in the PPI
sub-study, were not missing maternal cortical bone lead measurements,
did not experience EMG or probe delivery software malfunctions during
the PPI experiment, and had valid trial responses.

Negative estimates of bone lead concentrations may occur for lead
values close to zero; we used all point estimates without imposing a
minimum detectable limit and excluded participants with uncertainty
estimates for cortical bone lead values ≥10 μg/g as a standard quality-
control procedure (Wright et al., 2003). Use of all point estimates
without imposing a minimum detectable limit has been identified as the
most appropriate method for using these values in epidemiologic stu-
dies (Kim et al., 1995; Korrick et al., 2002).

Historically, several methods have been used to quantify PPI; the
preferred methods are to quantify PPI as a “proportion of the difference
from the control” or as a “proportion of control”, as these methods are
least affected by differences in baseline acoustic startle responses
(Blumenthal et al., 2004). PPI quantified as a “proportion of the dif-
ference from the control” is a relative difference calculated as:

−average magnitude X average magnitude ITI
average magnitude ITI

where average magnitude X is the average magnitude of responses to
probes during pre-pulse tones and average magnitude ITI is the average
magnitude of probe responses during the ITI. For regression methods,
the substantial right skewness of PPI necessitates a transformation of
our PPI variable. An appropriate solution for a linear regression fra-
mework would be to take the natural log of PPI+ some constant C to
avoid zero or negative values (Howell, 2007).

Thus, using C=1, we defined a transformed PPI as:

=

average magnitude X
average magnitude ITI

PPI* ln ( )

This new transformation is simply the natural log of the ratio of PPI
quantified as a “proportion of control”. In a linear regression framework
with PPI* as the dependent variable, a negative beta coefficient value
for an independent variable indicates increased PPI (more inhibition by
the pre-pulse tone) while a positive beta coefficient value indicates
reduced PPI (less inhibition by the pre-pulse tone). Henceforth, when
we refer to PPI, we are referring to the log-transformed “proportion of
control”. Individual PPI scores were collapsed into target and non-
target scores by stimulus onset asynchrony (SOA) for each participant.
An overall PPI analysis was performed using a 2×2 mixed ANOVA
(Condition: Attended vs. Ignored x SOA: 120ms vs. 240ms). We cal-
culated descriptive statistics and examined distributions for all vari-
ables of interest.

2.6.2. Causal inference
Causal inference involves the comparison of two potential out-

comes. Ideally, for each person in the population, we would want to
compare what would have happened had that person been exposed to
exposure e, compared to what would have happened had the person
been exposed to an alternative exposure e’ (Hernán et al., 2008;
Schwartz et al., 2018). The intra-person contrast of these two outcomes,
averaged over the entire population, would then constitute the average
causal effect of treatment on the outcome. In practice, only one out-
come for an individual is observed, corresponding to the exposure that
individual had indeed experienced. The unobserved outcome is defined
as “counter to fact” or counterfactual and needs to be estimated. Al-
though estimating the counterfactual outcome is unfeasible at the in-
dividual level, causal methods aim to provide averaged estimates for
counterfactual outcomes at the population level (Hernán et al., 2008;
Schwartz et al., 2018).

Randomized trials are often lauded as the gold standard because
when designed properly, they allow for the estimation of causal effects.
In the setting of an ideal randomized trial (i.e. no loss to follow-up, full
adherence to a well-defined assigned treatment, and double blind
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assignment), the randomized treatment groups would have similar
distributions of measured and unmeasured covariates and the only
difference between them would be their treatment assignment (Hernán
and Robins, 2018). Since the study groups are comparable (also defined
as exchangeable) in every way but their assigned treatment, any dif-
ference in the average outcome between the groups could only be
caused by the differences in the treatments across the groups. In this
setting, any effect estimates we obtain from statistical models evalu-
ating the association between treatment and outcome would have a
causal interpretation.

Randomized trials are often unfeasible or unethical to execute,
particularly in environmental epidemiology; hence, researchers must
rely on other approaches (such as well-designed observational studies)
to assess causal effects, being explicit about any assumptions that are
made. To endow our estimates with a causal interpretation in the
context of this study, we emulated a conditionally randomized trial
under the three main conditions necessary for causal inference: con-
sistency, exchangeability, and positivity. Our causal contrast of interest
is the average PPI value that would have been observed if all children
had been assigned to receive the mean prenatal lead value for the study
population (A=0) vs. the average PPI value that would have been
observed if all children had been assigned to a standard deviation in-
crease from the mean prenatal lead value (A= 1).

2.6.2.1. Assumptions of consistency, exchangeability, and positivity
2.6.2.1.1. Consistency. For our research question, consistency

means that the average counterfactual PPI value that would have
been observed if all children in the study population had been exposed
to the mean prenatal lead, equals their observed average PPI value if
they had indeed been exposed to the mean prenatal lead value. The
consistency assumption additionally implies that the values of prenatal
lead under comparison correspond to well-defined interventions. In
other words, all components of treatment assignment that could impact
the counterfactual outcomes have been specified. In our observational
setting, maternal bone lead accumulation could occur through multiple
exposure routes, such as from leaded paint in the home or from
occupational settings. If the mechanisms through which bone lead
accumulation occur have differential effects on PPI, the intervention
becomes ill-defined, as the causal effect is now dependent on the
specific mechanism through which prenatal lead exposure occurred.
Although there exists several mechanisms through which maternal
bone lead accumulation occurs, the effects of bone lead exposure on the
child in utero is expected to depend on the accumulated bone lead
concentration itself, and not on the underlying mechanisms leading to
accumulation (Silbergeld, 1991). This assumption is known as
treatment-variation irrelevance (Hernán and Robins, 2018).

2.6.2.1.2. Exchangeability. Exchangeability is assessed in terms of
exchangeability for treatment, and exchangeability for censoring. In the
present study, conditional exchangeability for treatment means that the
probability of study participants to be exposed to a given value of
prenatal lead depends only on the measured covariates (Hernán and
Robins, 2018). Thus, we assume that after adjusting for relevant
confounders, the two groups are exchangeable (i.e., no unmeasured
confounding), except for their exposure level. Conditional
exchangeability for censoring means that conditional on the
measured covariates, those who participated in the PPI sub-study
would have had the same PPI values as those who did not participate
in the PPI sub-study, had they in fact participated.

2.6.2.1.3. Positivity. The positivity condition means that there is a
non-zero, positive probability of being assigned to each treatment level
in each stratum of the covariates. This condition is necessary to
compute an average causal effect, as there must necessarily be
exposed and unexposed individuals. In an ideal, marginally
randomized trial with a binary treatment, the probability of being
assigned treatment (Pr [A= 1]) and not being assigned treatment (1- Pr
[A= 0]) are both positive by design, and therefore rarely evaluated as a

condition for ideal randomized trials (Hernán and Robins, 2018). In an
observational setting, positivity is not always expected to hold.
Therefore, to acquire unbiased estimates in our models, we must
assume, conditional on the covariates in our model, that each child
has a non-zero probability of having any prenatal lead exposure.

2.6.3. Assessing confounding and selection bias
To assess confounding, we considered the baseline covariates ma-

ternal marital status, maternal age, maternal education, maternal IQ,
SES, and smoking during pregnancy. These covariates have been
highlighted in previous studies as typical confounders of lead and
neurodevelopmental disorders in children (Braun et al., 2017; Lanphear
et al., 2005). We made decisions regarding confounding adjustment for
these variables by using directed acyclic graphs (DAGs), causal struc-
tures that encode statistical relationships between important variables
and the exposure and outcome of interest (Hernán et al., 2004). The
statistical relationships encoded in our DAG were additionally informed
by multiple imputation random lasso (MIRL), a variable selection al-
gorithm that identified maternal education, total breastfeeding months,
birthweight, child’s age at PPI experiment, and child’s sex as predictors
of PPI in our study population (Liu et al., 2016; Kponee-Shovein et al.,
2019). We used MIRL to identify predictors of PPI because PPI has ty-
pically been studied in cross-sectional, clinical studies. Given those
settings, there is limited information on predictors of PPI that could
inform confounding adjustment in epidemiological settings.

To assess selection bias, we compared distributions of prenatal lead
concentrations between participants in our PPI sub-study and non-
participants from the ELEMENT cohort. We regressed participation in
the PPI sub-study on prenatal lead (using a linear and quadratic term)
in a logistic regression model to assess if prenatal lead was associated
with participation. We used logistic regression models to assess if
covariates of interest were associated with participation in the PPI sub-
study and with our PPI outcome using linear and quadratic terms. We
also evaluated whether any post baseline variables predicted by pre-
natal lead were associated with both participation in the PPI sub-study
and PPI using linear and quadratic terms. Finally, we examined the
functional relationship between the variables included in our final
model and PPI and added quadratic terms when suggested by the data.

The results from our analyses regarding confounding and selection
bias are presented in Fig. 1. The first DAG represents our a priori as-
sumptions about the statistical relationships present in our study based
on prior studies on lead and neurodevelopmental disorders. The second
DAG represents the statistical relationships informed by our data. Of the
abovementioned potential confounders, only maternal education was
identified as a confounder, therefore, we adjusted for maternal educa-
tion to estimate the unbiased effect of prenatal lead on PPI. Of the
covariates, linear maternal IQ (p=0.02) was associated with selection
into the PPI sub-study, and our statistical model suggested a quadratic
relationship between maternal IQ and selection into the present study
(p=0.03). Due to the known association between prenatal lead and
maternal IQ and a priori assumptions, we adjusted for maternal IQ and
included a quadratic term.

In our study population, as evidenced by null effect estimates and p-
values, linear prenatal lead (p=0.78) and quadratic prenatal lead
(p=0.98) was not associated with selection into the present sub-study
and we could find no measured post baseline variables predicted by
prenatal lead that were associated with selection. As such, under the
assumption of no unmeasured confounding (an assumption necessary
for estimating causal effects in all observational studies), conditioning
on maternal IQ and maternal education was sufficient to ensure ex-
changeability for treatment and selection in our study population. We
additionally conditioned on child’s sex and birthweight, two predictors
of PPI not associated with prenatal lead, to enhance precision in our
effect estimates (Schisterman et al., 2009). Child’s age at PPI experi-
ment, another predictor of PPI, was also conditioned on to account for
the differential follow-up times of the three different ELEMENT cohorts
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and to enhance precision. Based on previous literature (H Hu et al.,
1995), we considered possible interactions between prenatal lead and
maternal age, sex, and child’s age at PPI test. These interaction terms
were not statistically significant and were excluded from final models.
Our final models for the primary analysis of the effect of prenatal lead

on PPI included the covariates maternal education, maternal IQ, child’s
age at PPI sub-study, child’s sex, and birthweight.

2.6.4. Models and estimations
We estimated the effect of prenatal lead on PPI using three methods:

Fig. 1. Directed Acyclic Graphs for the Total Effect of Prenatal Lead on PPI.
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ordinary least squares (OLS) regression, the parametric g-formula, and
a marginal structural model (MSM). The approaches for each method
are explained in detail below.

2.6.4.1. Traditional least squares regression. We regressed PPI on
prenatal lead and our final covariates in an OLS regression model,
and used a robust variance estimation to obtain 95 % confidence
intervals. Under the assumptions of consistency, exchangeability, and
positivity, the counterfactual mean PPI outcomes are equal to the
corresponding mean PPI outcomes in the data for our contrasts of
interest (Hernán and Robins, 2018). Because we assumed that there was
no effect modification, our slope estimate of β1 is an estimate of both
the conditional and marginal effect of prenatal lead on PPI (Hernán
et al., 2004). If our assumption regarding effect modification is
incorrect, our model is misspecified and our estimates are invalid.
Methods such as the parametric g-formula and MSMs allow us to obtain
valid effect estimates without requiring the additional assumption of
additivity.

2.6.4.2. The parametric g-formula. The g-formula is a generalization of
standardization that estimates the standardized outcome distributions
using exposure and confounder specific estimates of the outcome
distribution, in essence standardizing the mean outcomes to the
distribution of the confounders (Hernán and Robins, 2018). In the
case of few binary confounders, non-parametric methods can be used to
obtain effect estimates. Since our current research question required
adjusting for continuous covariates such that computing the
standardized means non-parametrically was unfeasible, we used
parametric regression modeling to estimate the standardized means
via the parametric g-formula.

To estimate the effect of prenatal lead on PPI using the parametric g-
formula, we used the three-step algorithm for the parametric g-formula
outlined by Hernán et al. (Hernán and Robins, 2018). We used non-
parametric bootstrap sampling with 10,000 samples to obtain percen-
tile-based 95 % confidence intervals.

2.6.4.3. Marginal structural models. MSMs have been well described as
causal models for estimating causal effects from observational data. The
parameters of an MSM can be consistently estimated using inverse-
probability-weighted estimators for treatment (Robins et al., 2000). We
first used modeling approaches to create inverse-probability-of-

treatment weighted estimators.
We regressed prenatal lead exposure on our covariates of interest in

a linear regression model assuming normally distributed residuals. The
standardized residuals from the model were used to evaluate the
normal probability density function at the value of the residual to ob-
tain the individual weights. Because weighting techniques for con-
tinuous exposures can lead to imprecise estimates, the precision of the
weights can be improved by “stabilizing” the weights and thereby re-
ducing the variability of the weights (Robins et al., 2000; VanderWeele
et al., 2011). We stabilized the weights from our linear regression
model by the normal probability density function of prenatal lead.

Finally, we fit a MSM for the expected counterfactual mean PPI
outcome by regressing our observed PPI outcome on prenatal lead and
weighting each participant by the stabilized inverse-probability-of-
treatment weight. We used robust variance estimation to obtain 95 %
confidence intervals to account for the sampling error in the estimation
of the stabilized weights (Hernán and Robins, 2018; Robins et al.,
2000).

2.6.5. Sensitivity analyses
We assessed the robustness of our estimate to additional adjust-

ments for other confounders typically adjusted for in studies of lead and
neurodevelopmental disorders (Braun et al., 2017; Huang et al., 2015;
Lanphear et al., 2005). Specifically, we additionally adjusted for ma-
ternal marital status, maternal age, SES index level, and smoking during
pregnancy using the abovementioned modeling approaches.

To confirm the use of the appropriate bone lead metric for our
question of interest, we examined the relationship between prenatal
trabecular bone lead and PPI using the same set of covariates for the
primary analysis and the three modeling approaches described above,

We conducted all analyses using R Statistical Software, version 3.2.4
(Foundation for Statistical Computing, Vienna, Austria) and SAS 9.4
(Cary, NC)

3. Results

3.1. Baseline characteristics

Table 1 shows the distribution of characteristics for participants in
the present study and non-participants from the ELEMENT cohort. In
general, there were no meaningful differences in baseline

Table 1
Characteristics of Participants and Non-participants from the ELEMENT Cohort.

Present Study Participants (N=279) Non-participantsfrom the ELEMENT Cohort (N=1819)

Characteristics n Mean ± SD or n (%) n % Missing Mean ± SD or n (%)
Age at PPI Testing (years) 279 13.3 ± 2.4 N/A N/A N/A
Sex, female 279 169 (49.0 %) 1617 11.1% 769 (47.5 %)
Gestational age (weeks) 279 39.0 ± 1.3 1606 11.7% 38.9 ± 1.6
Birthweight (kilograms) 279 3.1 ± 0.4 1621 10.9% 3.1 ± 0.5
Breastfeeding length (months) 279 8.8 ± 7.1 1354 25.6% 7.8 ± 6.3
Cumulative venous blood lead (μg/dL)a 279 6.2 ± 2.8 1399 2.2% 5.9 ± 3.2
Maternal tibia lead (μg/g) 279 9.3 ± 10.0 1150 36.8% 9.0 ± 9.9
Maternal patella lead (μg/g) 271 13.2 ± 12.4 1391 23.5% 11.0 ± 12.6
Maternal age (years) 279 26.1 ± 5.4 1809 0.5% 25.6 ± 5.3
Maternal education (years) 279 10.5 ± 3.1 1799 1.1% 10.3 ± 3.1
Maternal IQ 268 90.3 ± 20.6 1153 36.6% 87.5 ± 23.1
Maternal status, married 279 205 (73.5 %) 1807 0.7% 1240 (68.6 %)
Maternal parity 279 2.0 ± 1.1 1819 0.0% 2.0 ± 1.1
Prenatal smoking, ever 277 12 (4.3 %) 1798 1.2% 86 (4.8 %)
Paternal education (years) 262 10.5 ± 3.6 1634 10.2% 10.4 ± 3.5
SES index levelb 271 8.6 ± 3.4 485 11.5% 8.5 ± 3.3

Abbreviations: SES, socioeconomic status; N/A, not available.
Note: N/A indicates variables that were measured only at the PPI experiment.
[a]: Cumulative blood lead represents the average of cord blood lead and venous blood lead measurements collected at 1, 2, 3, 4, and 5 years of age. These
measurements were collected from 1710 children from the ELEMENT cohort.
[b]: SES index level was assessed only at the initial follow-up visit in 827 participants.
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characteristics between the two groups, with the exception of maternal
IQ points which was marginally higher for participants in the present
study than for non-participants (90.3 vs. 87.5; p=0.05). Among parti-
cipants in the present study, the mean age at testing for children was
13.3 years and about half of the children were female. The average total
education years was 10.5 years for mothers and fathers and only 4.3 %
mothers reported smoking during pregnancy. Mean prenatal lead was
9.3 μg/g with a standard deviation of 10.0 μg/g of bone mineral den-
sity.

3.2. PPI task performance

The PPI task performance, evaluated by how well the 279 children
identified their assigned target tone and the longer tones, was sa-
tisfactory. Among all responders, 65.6 % gave completely correct
counts, 19.7 % gave partially correct counts and 14.7 % gave counts
that were completely incorrect. Overall, the results of the task perfor-
mance suggested that the participants understood and were able to
appropriately perform the tasks assigned during the experiment

3.3. Overall PPI analysis

Fig. 2 displays the overall pattern of PPI for the attended and ig-
nored conditions for SOAs of 120ms and 240ms. Consistent with Fig. 2,
the 2× 2 mixed ANOVA (SOA: 120ms vs. 240ms vs. Condition: Attend
vs. Ignore) revealed a marginally significant main effect of SOA (F (1,
267)= 2.1, p= 0.15), no significant main effect of condition (F (1,
267) =0.7, p=0.42), and no significant SOA x condition interaction (F
(1, 195) =0.0, p=0.89). In the absence of an interaction, we combined
PPI results across condition and SOA for all subsequent analyses.

3.4. Primary analysis for the effect of prenatal lead on PPI

Table 2 presents results for the effect of prenatal lead on PPI using
OLS regression, the parametric g-formula, and a MSM. The second and
third columns provide estimated mean PPI values had all children been
assigned the mean prenatal lead value of 9.3 μg/g versus had all chil-
dren been assigned a one standard deviation increase (10.0 μg/g) to
yield a prenatal lead value of 19.3 μg/g. Columns four and five provide
slope estimates and percent changes for this causal contrast using the
three modeling approaches. The slope estimates and 95 % confidence
intervals were consistent across the three methods and indicate statis-
tically significant effects of prenatal lead on PPI. Specifically, for the
parametric g-formula, intervening to increase prenatal lead exposure by
a standard deviation would result in a 0.2-point mean decrease in PPI
(95 % CI: 0.1, 0.3). Based on our operationalization of PPI as a log
transformed ratio, this estimate equates to a 19.0 % (95 % CI: 5.4 %,
34.3 %) decrease in PPI in our study population.

3.5. Sensitivity analyses

Adjusting for all baseline covariates typically considered con-
founders in studies of lead and neurodevelopmental disorders yielded
similar effect estimates, although the estimates were slightly atte-
nuated. For the parametric g-formula, intervening to increase prenatal
lead exposure by a standard deviation would result in a 0.2-point mean
decrease in PPI (95 % CI: 0.0, 0.3). This estimate equates to a 17.7 %
(95 % CI: 2.5 %, 35.1 %) decrease in PPI in our study population
(Table 3). When we examined the relationship between prenatal tra-
becular bone lead levels and PPI, we found a null association across all
three modeling approaches (data not shown).

4. Discussion

In this present study, we used three different modeling approaches
to estimate the causal effect of prenatal lead exposure on PPI in chil-
dren. The results from our analyses suggest a statistically significant
effect of prenatal lead exposure on PPI deficits in Mexican children
8–17 years of age. Our study is the first study to evaluate the re-
lationship between lead and PPI in humans; only one prior study has
investigated this relationship in rodents. Consistent with our results, the
rodent study found mildly impaired PPI of the acoustic startle reflex in
offspring of rats that had been exposed to lead (Ferguson et al., 1998).

Epidemiological studies have provided an abundance of evidence
that prenatal lead exposure is associated with disruptions in neu-
ropsychiatric functions (Baghurst et al., 1992; Huang et al., 2015;
Lanphear et al., 2005; Senut et al., 2012). Consistent with studies of
lead and neurodevelopmental disorders, our findings suggest that pre-
natal lead causes deficits in PPI. PPI deficits have been associated with a
number of neurodevelopmental disorders in children and adolescents
(Takahashi et al., 2011). Furthermore, the 19 % decrease in PPI for a
standard deviation increase from the mean prenatal lead value ob-
served in this study is similar in magnitude to clinical studies on schi-
zophrenia, which have observed PPI impairments in patients with
schizophrenia as compared to controls, with percent decreases in PPI
ranging from approximately 16%–20% in these studies (Csomor et al.,
2009; Mena et al., 2016). The consistency of findings from this study
with previous clinical studies on PPI impairments and neurodevelop-
mental disorders provide additional support for the potential utility of
PPI as an objective biomarker of neurotoxicity.

While previous studies on PPI impairments have been cross-sec-
tional in nature, our study is the first prospective epidemiological study
to examine this relationship. Our results provide some support for the
use of PPI as an objective metric for the detection of early or subclinical
neurological deficits in children exposed to prenatal lead. Additionally,
given that PPI is a phenomenon with a well-defined neural basis, it may
prove more objective than other measures (e.g., behavioral ratings) of
neurodevelopmental disorders in children. In addition, deficits in PPI
may be an earlier indicator of risk for later neurodevelopmental dis-
orders, and therefore an earlier marker of the effects of environmental
toxicants. Although impaired PPI has been observed in a range of
neurodevelopmental disorders in human subject studies, a longitudinal
study to assess whether PPI predicts later development of such dis-
orders has not been done. Future studies that elucidate on the pro-
spective association between PPI and neurodevelopmental disorders
will be needed to inform relevant interventions.

The classic neural circuitry involved in the modification of the
acoustic startle reflex via PPI is primarily localized in the brain stem,
although recent studies also suggest the involvement of the forebrain
regions in the regulation of sensorimotor gating (Rodrigues et al.,
2017). Several studies have suggested that lead disrupts evoked po-
tentials mediated by neurons in the brain stem (Alvarenga et al., 2015).
Animal model studies have provided additional insight on mechanisms
underlying neurotoxicity from prenatal lead exposure (Verina et al.,
2007; White et al., 2007). These studies suggest that exposure to lead

Fig. 2. Mean PPI for Attended and Ignored Task Conditions at 120ms and
240ms Stimulus Onset Asynchronies.
Note: Error bars indicate the standard error of the means

K.Z. Kponee-Shovein, et al. Neurotoxicology 78 (2020) 116–126

122



can interfere with neurogenesis by inhibiting the proliferation, devel-
opment, and survival of newly generated neurons in the developing
fetus (White et al., 2007). Prenatal lead exposure inhibits neuronal
development in the growing fetus and interferes with many biological
system critical for regulating synaptic plasticity, such as the activity of
protein phosphatases (Senut et al., 2012). Our results add to this line of
research, providing evidence that prenatal lead exposure can disrupt
neural systems that are responsible for regulating sensorimotor gating
processes such as PPI. The long-term effects of these disruptions may
subsequently lead to neuronal pathologies indicative of inadequate
motor or sensory gating (Geyer, 2006).

Our models provide evidence of a causal effect of prenatal lead on
PPI in children under the three main causal inference assumptions of
exchangeability, consistency, and positivity. To evaluate the robustness
of our estimates, we also adjusted for additional baseline covariates
typically considered confounders in studies of lead and neurodevelop-
mental disorders. We found that these estimates were similar with es-
timates from our primary analysis across the three modeling strategies.
This observation provides some evidence that PPI may be a more ob-
jective marker for adverse effects of toxicants on the brain than cur-
rently used metrics. Childhood neurodevelopmental disorders such as
attention-deficit hyperactivity disorder (ADHD), autistic spectrum dis-
order (ASD), and early psychosis are typically evaluated using sub-
jective measures that incorporate limitations such as informant biases
(Emser et al., 2018; Sharma et al., 2018). Typical confounders that are
adjusted for when evaluating the association between these disorders

and environmental toxicants may be confounders for the environmental
toxicant and the subjectivity of the metric, and not the underlying
disorder itself. PPI is an automatic biological phenomenon that is
measured using an EMG, suggesting that it’s metric may be more ob-
jective than behavioral ratings.

In a sensitivity analysis, we evaluated the relationship between
prenatal trabecular bone lead and PPI in children. We did not find an
association between trabecular bone lead and PPI. This is expected
because bone mineral density and bone turnover, especially resorption
during pregnancy, occurs at a higher rate with trabecular bone than
with cortical bone. This is because more trabecular bone surfaces are
more readily available for turnover (Gulson et al., 2004) during preg-
nancy. Because trabecular bone lead was measured approximately 4
weeks postpartum in mothers, the trabecular bone lead measurements
may not be a reliable proxy for prenatal bone lead measurements
during pregnancy due to the higher turnover rate. As such, it is un-
surprising that we observed a null association between trabecular bone
lead and PPI.

Our assumptions that the results observed in our study population
are not distorted by self-selection bias is supported by the null asso-
ciation observed between prenatal lead and selection into the present
PPI sub-study. Despite the smaller study sample size, this reduction is
not expected to systematically bias our findings, because selection bias
results from conditioning on common effects (e.g., selection into the PPI
sub-study) of an exposure lead and outcome under study (Hernán and
Robins, 2018). Given that selection into the study is not predicted by

Table 2
Slope Estimatesa for the Total Effect of Prenatal Lead on PPI.

Modeling Strategy Mean PPI for
Prenatal lead
at 9.3 μg/gb
(95% CI)

Mean PPI for
Prenatal lead
at 19.3 μg/gc
(95% CI)

Slope
estimate
(95% CI)

Percent changed(%)
(95% CI)

Crude model −0.2 (−0.4, −0.1) −0.1 (−0.2, 0.1) 0.2 (0.0, 0.3) 18.6% (4.3%, 35.0%)
Multivariable OLS modele −0.2 (−0.4, −0.1) −0.1 (−0.2, 0.1) 0.2 (0.1, 0.3) 19.0% (5.4%, 35.7%)
Parametric

g-formula
−0.2 (−0.4, −0.1) −0.1 (−0.3, 0.1) 0.2(0.1, 0.3) 19.0% (5.4%, 34.3%)

Marginal structural model −0.2 (−0.4, −0.1) −0.0 (−0.2, 0.2) 0.2 (0.1, 0.3) 19.0% (6.0%, 35.1%)

Abbreviations: PPI, prepulse inhibition; OLS, ordinary least squares; CI, confidence intervals.
aAdjusted estimates are based on adjustments for maternal education, maternal IQ, birthweight, child’s sex, and child’s age at PPI experiment. All estimates are
rounded to the tenth place.
bThe mean prenatal lead value represents the average cortical bone lead measurements for the study population.
cThe mean prenatal lead at 19.3μg/g represents the average cortical bone lead value for the study population plus the standard deviation (10.0 μg/g) of the average
cortical bone lead value for the study population.
dThe percent change for each modeling strategy was calculated as (e(slope estimate)-1)*100.
eAll other covariates in the model were set to their mean values.

Table 3
Sensitivity Analysis: Slope Estimatesa for the Total Effect of Prenatal Lead on PPI.

Modeling Strategy Mean PPI for
Prenatal lead
at 9.33 μg/gb
(95% CI)

Mean PPI for
Prenatal lead
at 19.33 μg/gc

(95% CI)

Slope
estimate
(95% CI)

Percent changed (%)
(95% CI)

Crude model −0.2 (−0.4, −0.1) −0.1 (−0.2, 0.1) 0.2 (0.0, 0.3) 18.6% (4.3%, 35.0%)
Multivariable OLS modele −1.4 (−2.8, 0.0) −1.2 (−2.6, 0.2) 0.2 (0.0, 0.3) 17.8% (2.5%, 35.3%)
Parametric

g-formula
−0.2 (−0.4, −0.1) −0.1 (−0.3, 0.1) 0.2 (0.0, 0.3) 17.7% (2.5%, 35.1%)

Marginal structural model −0.2 (−0.4, −0.1) −0.1 (−0.3, 0.2) 0.2 (0.0, 0.3) 17.5% (2.4%, 34.7%)

Abbreviations: PPI, prepulse inhibition; OLS, ordinary least squares; CI, confidence interval; SES, socio-economic status.
aAdjusted estimates are based on adjustments for maternal education, maternal IQ, birthweight, child’s sex, child’s age at PPI experiment, maternal marital status,
maternal age, SES index level, and prenatal smoking status. All estimates are rounded to the tenth place.
bThe mean prenatal lead value represents the average cortical bone lead measurements for the study population.
cThe mean prenatal lead at 19.3μg/g represents the average cortical bone lead value for the study population plus the standard deviation (10.0 μg/g) of the average
cortical bone lead value for the study population.
dThe percent change for each modeling strategy was calculated as (e(slope estimate)-1)*100.
eAll other covariates in the model were set to their mean values.
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prenatal lead, there is some assurance that self-selection bias is not a
concern in our study population. Given the ubiquity of lead in the en-
vironment, and the expected mobilization of prenatal bone lead during
pregnancy at varying levels, we assumed that positivity held in our
study. Given our small sample size of 279 mother-child pairs, there may
exist violations of positivity due to a finite sample size, but this scenario
is not expected to violate the assumptions for causal inference when
parametric methods are employed. Parametric models smooth over
random violations of positivity by borrowing information from other
strata without random positivity violations.

The validity of our effect estimates is dependent on the additional
assumptions of no model misspecification and measurement error. To
protect against model misspecification, we examined the functional
relationships of covariates of interest and included higher-order terms
when suggested by the data. Our effect estimates are expected to be
robust to measurement error due to our exclusion of maternal cortical
bone lead measurements with uncertainty values greater than 10 μg/g
as such high uncertainty suggests systematic error in ascertaining cor-
tical bone lead concentrations due to excessive movement of the par-
ticipant during measurement (H Hu et al., 1995). Additionally, our PPI
values were restricted to children who had valid trial responses and
who did not experience EMG malfunctions during the PPI experiment.
Due to the randomness of the malfunctions, these exclusion of trials
with EMG malfunctions should not result in any systematic biases, al-
though, a consequence of this restriction is a loss in power.

Our estimate for the effects of prenatal lead on PPI were consistent
across the three methods for all analyses. While the three methods
employed different modeling strategies, all three methods made the
same assumptions regarding exchangeability, positivity, and con-
sistency, with the OLS regression model making an additional as-
sumption about additivity. The consistency of our estimates across the
three methods provide some evidence for the absence of serious model
misspecification. A limitation of the OLS regression approach is that the
average PPI value for our two exposure contrasts are conditional on the
mean values for other covariates in the model and may be difficult to
interpret meaningfully for policy purposes. A benefit to the parametric
g-formula and the MSM is the ability to observe the marginal mean PPI
outcomes for the two exposure contrasts. Using the parametric g-for-
mula and the MSM, we can observe the mean PPI outcome had every
child been exposed to a prenatal lead value of 9.3 μg/g versus if every
child had been exposed to a prenatal lead value of 19.3 μg/g. As evi-
denced by our results, we observed a substantial reduction in PPI for a
standard deviation increase from the mean prenatal lead value.

Our study is not without limitations. While our current study de-
monstrates that lead significantly impairs PPI, it is unclear if these
impairments can be interpreted as a subclinical indicator of neurode-
velopmental disorders. Although several cross-sectional studies have
observed PPI deficits in children with various neurodevelopmental
disorders (Takahashi et al., 2011), the limited control for confounding
factors, small sample size, and the cross-sectional nature of these stu-
dies warrant additional investigations into the relationship between PPI
and these disorders in larger, prospective studies. As with all observa-
tional studies, the assumption of no unmeasured confounding is an
untestable hypothesis. Given the novelty of our study question, we
cannot rule out the possibility of important confounders of lead and PPI
that were not considered in our study. Finally, our estimates may not be
generalizable to other populations with different distributions of lead,
covariates, or effect modifiers not tested in the present study.

Nevertheless, the prospective design of our study enhances our
ability to evaluate the temporal relationship between prenatal lead
exposure and PPI. Additionally, the careful examination of the condi-
tions necessary for endowing our effect estimates with a causal inter-
pretation supports our assessment of prenatal lead as a determinant of
PPI deficits instead of a correlate. The consistency of our study results
with other human and animal model studies on lead and neurodeve-
lopment highlight the potential value of PPI as an adjunct or screening

tool for identifying children and adolescents at risk for various neuro-
behavioral disorders. Finally, the results from our study underscore the
potential utility of PPI as a biologically relevant metric for assessing the
relationship between environmental toxicants and neurodevelopmental
disorders in epidemiological settings. Future research on the effects of
other environmental toxicants on PPI and the prospective relationship
between PPI and neurodevelopmental disorders will be valuable for
environmental neurodevelopmental research.

5. Conclusion

Our study is the first to assess the effect of prenatal lead on PPI
deficits, a neurological marker for various neurodevelopmental dis-
orders, using traditional and novel methods in a cohort of children and
adolescents from Mexico City. The results of our study suggest that
prenatal lead exposure causes PPI deficits in children and adolescents.
Our findings are consistent with results from epidemiological studies
that have found associations between lead exposure and neurodeve-
lopmental disorders in this population. Our results suggest that PPI may
be a valuable adjunct screening tool for assessing neurotoxicant effects
on the brain and highlight the need for prospective studies on the re-
lationship between other environmental toxicants and PPI, and the
relationship between PPI and a range of neurodevelopmental disorders
in children and adolescents.
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