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10Hospital General de Zona No.1 Nueva Frontera, Tapachula, Chiapas, Mexico.
11Hospital Regional de Alta Especialidad de Oaxaca, San Bartolo Coyotepec, Oaxaca, Mexico.
12Hospital Regional de Alta Especialidad Bicentenario de la Independencia, Tultitlán de Mariano Escobedo, Estado de México, Mexico.
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In this study, we report the carbapenemase-encoding genes and colistin resistance in Escherichia coli,
Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa in the second year of the
COVID-19 pandemic. Clinical isolates included carbapenem-resistant K. pneumoniae, carbapenem-resistant
E. coli, carbapenem-resistant A. baumannii, and carbapenem-resistant P. aeruginosa. Carbapenemase-encoding
genes were detected by PCR. Carbapenem-resistant K. pneumoniae and carbapenem-resistant E. coli isola-
tes were analyzed using the Rapid Polymyxin NP assay. mcr genes were screened by PCR. Pulsed-field gel
electrophoresis and whole-genome sequencing were performed on representative isolates. A total of 80
carbapenem-resistant E. coli, 103 carbapenem-resistant K. pneumoniae, 284 carbapenem-resistant A. bau-
mannii, and 129 carbapenem-resistant P. aeruginosa isolates were recovered. All carbapenem-resistant E. coli
and carbapenem-resistant K. pneumoniae isolates were included for further analysis. A selection of carbapenem-
resistant A. baumannii and carbapenem-resistant P. aeruginosa strains was further analyzed (86 carbapenem-
resistant A. baumannii and 82 carbapenem-resistant P. aeruginosa). Among carbapenem-resistant K. pneumoniae
and carbapenem-resistant E. coli isolates, the most frequent gene was blaNDM (86/103 [83.5%] and 72/80
[90%], respectively). For carbapenem-resistant A. baumannii, the most frequently detected gene was blaOXA-40

(52/86, 60.5%), and for carbapenem-resistant P. aeruginosa, was blaVIM (19/82, 23.2%). For carbapenem-
resistant A. baumannii, five indistinguishable pulsotypes were detected. Circulation of K. pneumoniae New Delhi
metallo-b-lactamase (NDM) and E. coli NDM was detected in Mexico. High virulence sequence types (STs),
such as K. pneumoniae ST307, E. coli ST167, P. aeruginosa ST111, and A. baumannii ST2, were detected.
Among K. pneumoniae isolates, 18/101 (17.8%) were positive for the Polymyxin NP test (two, 11.0% positive
for the mcr-1 gene, and one, 5.6% with disruption of the mgrB gene). All E. coli isolates were negative for the
Polymyxin NP test. In conclusion, K. pneumoniae NDM and E. coli NDM were detected in Mexico, with the
circulation of highly virulent STs. These results are relevant in clinical practice to guide antibiotic therapies
considering the molecular mechanisms of resistance to carbapenems.

Keywords: COVID-19, drug resistance, NDM, carbapenem resistance

Introduction

S ince patients with COVID-19 (coronavirus disease
2019) may acquire secondary coinfections, they com-

monly receive antimicrobial therapy, including carbape-
nems.1,2 Several reports have described an increase in
carbapenem-resistant gram-negative organisms, especially
Klebsiella pneumoniae, Escherichia coli, Acinetobacter
baumannii, and Pseudomonas aeruginosa.3,4

Drug resistance is generated by various mechanisms,
including decreased expression of outer membrane protein,
expression of efflux pumps, and/or expression of b-
lactamases as extended-spectrum b-lactamases (ESBL) and
carbapenemases.5 Carbapenemases belong to Ambler clas-
ses A, B, or D and are chromosomal or plasmidic.6 Ambler
class A (e.g., K. pneumoniae carbapenemase [KPC]) is most
frequently observed in Enterobacterales. Class B carbape-
nemases (metallo-b-lactamases [MBLs], including Verona
integron-encoded MBLs [VIM] and imipenemase enzymes
[IMP]) are most frequently observed in P. aeruginosa and
Enterobacterales,7 and the New Delhi MBL [NDM] carba-
penemase has been detected in K. pneumoniae and E. coli
and to a lesser extent in other bacterial species.8 Class D
carbapenemases, which include oxacillinases (OXA) and
OXA type-related enzymes, are most commonly observed
in Enterobacterales and A. baumannii.9–11

Among emerging carbapenem resistance genes, blaNDM

has been considered to be a significant challenge due to its
ability to hydrolyze a wide range of b-lactams, spread
rapidly, and confer resist most available treatments.12 Cur-
rently, 24 NDM variants have been characterized from more
than 60 species of 11 bacterial families12 and are usually

transferred by plasmids.7,13 Based on available data, the
worldwide highest frequency of NDM-producing bacteria
is reported across Asia, America, Africa, and Europe.14

The presence of carbapenem-resistant strains of K. pneu-
moniae, E. coli, A. baumannii, and P. aeruginosa has led to
the reuse of old antibiotics that were considered too toxic for
clinical use, such as the family of antimicrobial lipopeptides
polymyxins (colistin and polymyxin B).15–17 Regrettably,
the overuse of colistin in human and animal medicine has
led to the emergence of colistin-resistant pathogens.18 Dif-
ferent mechanisms of colistin resistance have been charac-
terized, including intrinsic, mutational, and transferable
mechanisms.19 Up to 2019, Mexico was ranked fifth
among countries with the highest reports of carbapenemase-
producing and colistin-resistant (mediated by chromo-
somal mechanisms) K. pneumoniae in the Americas.20 This
study aimed to report the carbapenemase-encoding genes
in K. pneumoniae, E. coli, A. baumannii, and P. aeruginosa
bacterial species from medical centers of Mexico in the
second year of the COVID-19 pandemic, as well as to iden-
tify the colistin resistance in these bacterial isolates.

Materials and Methods

Study design, data collection, and analysis

In this study, clinical isolates and susceptibility data from
23 participating centers (21 hospital-based laboratories and
2 external laboratories) were collected from January 1, 2021,
to August 31, 2021.

Clinical isolates included carbapenem-resistant K. pneu-
moniae, carbapenem-resistant E. coli, carbapenem-resistant
A. baumannii, and carbapenem-resistant P. aeruginosa.
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Carbapenem resistance was determined according to the
Clinical and Laboratory Standards Institute (CLSI) crite-
ria.21 All identifications were confirmed using matrix-
assisted laser desorption/ionization - time-of-flight. Isolates
from all wards were included, and only the first isolate per
patient was considered for analysis.

Susceptibility test results, including ESBL production,
included K. pneumoniae, E. coli, A. baumannii, and
P. aeruginosa isolates collected from blood, urine, and
respiratory specimens (bronchial lavage and tracheal aspi-
rates). Each laboratory tested susceptibilities using routine
methods, including some instruments (VITEK 2, BioMér-
ieux; Phoenix Automated Microbiology System, Becton-
Dickinson; MicroScan WalkAway, Siemens Healthcare
Diagnostics; and Sensititre, TREK Diagnostic Systems,
Inc.) or the disk diffusion method. Data were collected and
deposited into the WHONET 2021 platform and converted
to the WHONET format using the BacLink 2 tool.

Carbapenemase phenotypic assays

All clinical isolates were received at the coordinating
laboratory. Nonsusceptibility to carbapenems was con-
firmed using the disk diffusion test according to the CLSI
criteria.21 All carbapenem-nonsusceptible A. baumannii and
P. aeruginosa were included for further analysis.

K. pneumoniae and E. coli strains categorized as carba-
penem resistant or intermediate were tested to determine the
presence of carbapenemases using carbapenem inactivation
tests.21 Only positive strains for these tests were included
for further analysis.

Detection of carbapenemase genes

For carbapenemase-encoding genes detection, Entero-
bacterales isolates were evaluated by PCR for blaNDM,
blaKPC, blaOXA-48, blaVIM, blaIMP, and blaGES genes, as
previously described.22–26

Carbapenem-resistant A. baumannii and carbapenem-
resistant P. aeruginosa were evaluated by PCR for blaNDM,
blaVIM, blaIMP, blaGES, blaOXA-23-like, blaOXA-40-like (former
blaOXA-24-like), and blaOXA-58 using primers designed for
this study (Table 1). DNA was extracted using the boil
lysis method. For each reaction, 0.2 mM of each dNTP

(Invitrogen), 1 U Taq DNA polymerase with ThermoPol
(New England BioLabs), and 10 pmol of each primer were
added for a 25 mL reaction mixture. PCR conditions were
1 cycle at 95�C for 1 min; 30 cycles at 95�C for 30 sec, 56�C
for 30 sec (52�C only for IMP), and 68�C for 40 sec; and a
final cycle at 68�C for 6 min. PCR products were visualized
using a 1% agarose gel.

Phenotypic and genotypic screening
of colistin nonsusceptibility

All K. pneumoniae and E. coli isolates were analyzed
using the Rapid Polymyxin NP assay.27 For clinical isolates
positive for the assay, the minimal inhibitory concentration
(MIC) for colistin was determined as recommended by the
joint CLSI–European Committee on Antimicrobial Suscep-
tibility Testing (EUCAST) polymyxin breakpoints work-
ing group. The plasmid-borne mcr-1, mcr-2, mcr-3, mcr-4,
and mcr-5 genes were screened by PCR using generic
primers.28 The mgrB gene and its promoter region were
amplified with the following primers: Pr_mgrB_F, CCAT
AAGATAGCCACCAAG¢ and mgrB_ext_R, TTAAGAA
GGCCGTGCTATCC.29 The PCR products were sequenced
using the Sanger method.

Clonal relatedness and multilocus sequence typing

The clonal relatedness of clinical isolates and those
recovered was determined through pulsed-field gel electro-
phoresis (PFGE) of representative isolates for each bacterial
species.30 For K. pneumoniae, 55 isolates were selected;
for E. coli, 24 isolates; for A. baumannii, 56 isolates; and
P. aeruginosa, 55 isolates. The results were analyzed using
GelCompar II software (Applied Maths, Kortrijk, Belgium).
Band patterns were interpreted according to the similarity
percentage represented using a dendrogram derived from
UPGMA and Dice coefficients (band position tolerance and
optimization were set at 0.7% and 0.65%, respectively) and
according to the Tenover criteria.31

Whole-genome sequencing and sequence
type determination

Whole-genome sequencing was performed in five selec-
ted carbapenem-resistant isolates from each species to detect

Table 1. Primers Used for the Detection of Carbapenemase-Encoding Genes

for Acinetobacter baumannii and Pseudomonas aeruginosa

Gene Sequence (5¢/3¢) PCR product, bp

blaNDM F-GGCGGAATGGCTCATCACGA 635
R-CGCAACACAGCCTGACTTTC

blaVIM F-AGTGGTGAGTATCCGACAG 485
R-ATGAAAGTGCGTGGAGAC

blaIMP F-GTGATGCGTCYCCAAYTTCACT 435
R-GGAATAGAGTGGCTTAATTCT

blaGES F-TCATTCACGCHCTATTVCTGGCA 857
R-CTATTTGTCCGTGCTCAGG

blaOXA-23 F-GATCGGATTGGAGAACCAGA 320
R-ATTTCTGACCGCATTTCCAT

blaOXA-40 F-GGAATTCCATGAAAAAATTTATACTTCC 405
R-CGGGATCCCGTTAAATGATTCCAAGATTTTCTAGCG

blaOXA-58 F-CTCAATCATCGATCAGAA 380
R-ACCCACATACCAACCCAC
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sequence type (ST). Strains were selected from different
centers included in this study. DNA was extracted using the
DNeasy Kit (Qiagen, Germany) according to the manufac-
turer’s instructions. Sequencing was performed using the
Illumina (MiSeq) platform. Quality-based trimming was
performed with the Trim Galore software, and de novo
assembly was completed with SPAdes v3.12.0. The draft
genomes were annotated using the NCBI Prokaryotic Gen-
ome Annotation Pipeline.

The multilocus sequence typing (MLST) for K. pneu-
moniae, E. coli, A. baumannii, and P. aeruginosa was
determined in silico.

Ethics statement

The local ethics committee of Hospital Civil de Guada-
lajara ‘‘Fray Antonio Alcalde’’ ( Jalisco, Mexico) approved
this study (Reference No. 129/17). The ethics committee
waived informed consent. All participating institutions agreed
with the present study.

Results

Collected isolates

A total of 596 carbapenem-resistant or carbapenem-
intermediate isolates were recovered: 103 (17.3%) K. pneu-
moniae, 80 (13.4%) E. coli, 284 (47.6%) A. baumannii, and
129 (21.7%) P. aeruginosa. All K. pneumoniae and E. coli
isolates were included for further analysis. A selection of
A. baumannii and P. aeruginosa strains was further ana-
lyzed (86 A. baumannii, 82 P. aeruginosa), considering the
inclusion of clinical isolates from all centers that partici-
pated in the study.

Carbapenemase-encoding genes

Among K. pneumoniae isolates, the most frequent
carbapenemase-encoding gene was blaNDM (n = 86), fol-
lowed by blaKPC (n = 11) (Table 2); other carbapenemase-

encoding genes detected were blaVIM (n = 5) and blaIMP

(n = 1), and four isolates were negative for all genes
screened. Among E. coli isolates, the most frequent
carbapenemase-encoding gene was blaNDM (n = 72), fol-
lowed by blaVIM (n = 9), blaKPC (n = 1), blaIMP (n = 1), and
blaGES (n = 1), and 10 isolates were negative for all genes
screened. Among A. baumannii isolates, the most frequent
carbapenemase-encoding gene was blaOXA-40 (n = 52), fol-
lowed by blaOXA-23 (n = 20) and blaOXA-58 (n = 1), and four
isolates were negative for all genes screened (Table 3).

Among P. aeruginosa isolates, the most frequent
carbapenemase-encoding gene was blaVIM (n = 19), fol-
lowed by blaGES (n = 8) and blaIMP (n = 7), and 48 isolates
were negative for all genes screened (Table 3). Regarding
K. pneumoniae, five strains carried two carbapenemases
(three carried blaNDM and blaVIM, one carried blaKPC and
blaIMP, and one carried blaKPC and blaVIM). Regarding
E. coli, eight strains carried two carbapenemases (six carried
blaNDM and blaVIM, one blaNDM and blaIMP, and one carried
blaNDM and blaGES).

Clonal relatedness and MLST

PFGE analyzed by the Tenover criteria indicated that
for K. pneumoniae, E. coli, and P. aeruginosa, no indistin-
guishable isolates were detected; clusters were detected
(5 for K. pneumoniae and 11 for P. aeruginosa).

For A. baumannii, five indistinguishable pulsotypes
were detected: A (n = 3) with subtype A1 (n = 1); G (n = 2)
with subtypes G1 (n = 1), G2 (n = 1), G3 (n = 1), and G4
(n = 1); H (n = 2) with seven subtypes H1 (n = 1), H2 (n = 1),
H3 (n = 2), H4 (n = 1), H5 (n = 1), H6 (n = 1), H7 (n = 2);
K (n = 2) with subtype K1 (n = 1); and N (n = 4) with
subtypes N1 (n = 3) and N2 (n = 1) (Supplementary Fig.
S1A–D).

Five strains, from each species, selected from different
centers were included in this study for MLST. Among
K. pneumoniae isolates, ST307 (n = 2; NDM-1 and KPC-3),
ST1876 (n = 2; NDM-1), and ST4839 (n = 1; NDM-1) were
detected. Among E. coli isolates, ST167 (n = 4; NDM-5) and
ST361 (n = 1; NDM-5) were detected. Among A. baumannii
isolates, two strains corresponded to ST369 (n = 2; blaOXA-40)
(Oxford system) or ST2 (Pasteur system), two strains cor-
responded to ST208 (n = 2; blaOXA-40) (Oxford system) or
ST2 (Pasteur system), and one was ST1694 (n = 1; blaOXA-40)
(Oxford system) or ST422 (Pasteur system). Among
P. aeruginosa isolates, ST111 (n = 1), ST274 (n = 1), ST983
(n = 1), ST309 (n = 1), and ST260 (n = 1) were detected.

Colistin nonsusceptibility analysis

Among K. pneumoniae isolates, 101 isolates were eval-
uated, of which 83 were negative for the Polymyxin NP test
and 18 were positive (Table 4). Two isolates were positive
for the mcr-1 gene, and in one isolate, disruption of the
mgrB gene by an insertion sequence was identified. No other
colistin resistance mechanism could be identified in the
present study. The colistin MIC was 4 mg/mL for mcr-1-
encoding isolates and 32 mg/mL for the mgrB-disrupted
isolate. The MIC range was 8–32mg/mL for the other
colistin-resistant isolates. All E. coli isolates were negative
for the Rapid Polymyxin NP test (Table 4).

Table 2. Distribution of Genes Encoding

Carbapenem Resistance in Klebsiella pneumoniae

and Escherichia coli

n blaNDM blaKPC blaVIM blaIMP blaOXA-48 blaGES

K. pneumoniae (n = 103)
83 + - - - - -
9 - + - - - -
4 - - - - - -
3 + - + - - -
1 - + - + - -
1 - + + - - -
1 - - + - - -
1 - - - - + -

E. coli (n = 80)
64 + - - - - -
6 + - + - - -
3 - - + - - -
3 - - - - +
1 + - - + - -
1 - + - - - -
1 + - - - - +
1 - - - - - -

+, positive; -, negative.
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Drug resistance patterns in the included centers

Among clinical isolates collected from blood, carbape-
nem resistance was the highest for A. baumannii (88.8%
for meropenem) (Supplementary Table S1 and Fig. 1). For
P. aeruginosa, resistance to ceftazidime and piperacillin–
tazobactam was 23.8% and 23.2%, respectively. In this
study, 63.7% of K. pneumoniae isolates were detected to be
ESBL producers.

Among respiratory isolates, A. baumannii had resistance
rates higher than 86% for antibiotics evaluated (88.9% for
meropenem). Carbapenem resistance in K. pneumoniae
was near 10% (Supplementary Table S2 and Fig. 1). Among
K. pneumoniae isolates, 49.1% were ESBL producers.

For clinical isolates collected from urine, A. baumannii had
resistance rates up to 91.5% for imipenem (Supplementary
Table S3 and Fig. 1). For E. coli, carbapenem resistance
was lower than 1.5% and resistance rates higher than 50%
were detected for cephalosporins and quinolones. Among K.
pneumoniae isolates, 45.4% were ESBL producers.

Discussion

The COVID-19 pandemic has redefined the hospital
microbiota and the distribution of genes encoding drug
resistance, particularly the carbapenemase-encoding genes.
In this study, we identified the genes encoding carbapene-
mases in clinically relevant gram-negative bacteria in Mexican
centers during the COVID-19 pandemic in 2021 and detected
that the most frequent carbapenemase-encoding gene was

blaNDM in both K. pneumoniae and E. coli. Regarding this
carbapenemase-encoding gene, a systematic review reported
that K. pneumoniae blaNDM strains were as frequent as 20.1%
in Europe, 9.0% in America, 5.6% in Africa, and 0.4% in
Oceania, with variants blaNDM-1, blaNDM-5, blaNDM-4, and
blaNDM-7 being more frequently reported.14

In Mexico, blaNDM-1 was first reported in 2013 in a
clinical isolate of Providencia rettgeri.32 Since this first
case, several reports have been published,33–35 including a
recent multicenter report that included clinical isolates from
January to March 2020 (just before the COVID-19 pan-
demic in Mexico), in which blaNDM-1 was detected in
K. pneumoniae (4/4) and E coli (10/15).36 In the present
study, 103 K. pneumoniae (n = 86; 83.5% blaNDM) and 80
E. coli (n = 72; 90% blaNDM) isolates were collected from
23 centers over 8 months during the COVID-19 pandemic,
indicating an increase in circulation of this carbapenemase-
encoding gene in Enterobacterales in Mexico.

K. pneumoniae ST258 is widely recognized as an
antibiotic-resistant, high-risk clonal lineage.37 In addition,
K. pneumoniae ST307 is now considered a lineage with the
potential to become a clinically relevant epidemic clone,38–41

with several outbreak reports in clinical settings42–45 and the
community.46

K. pneumoniae ST307 often carries transferable
resistance-conferring genes against carbapenems, including
blaKPC-3 and blaNDM-1.38,47 In the present study, two of the
five K. pneumoniae strains were detected as ST307. These
strains harbored the blaKPC-3 gene and blaNDM-1, underlying

Table 3. Distribution of Genes Encoding Carbapenem Resistance in Acinetobacter baumannii

and Pseudomonas aeruginosa

n blaNDM blaVIM blaIMP blaGES blaOXA-23 blaOXA-40 blaOXA-58

A. baumannii (n = 86)
52 - - - - - + -
20 - - - - + - -
13 - - - - - - -
1 - - - - - - +

P. aeruginosa (n = 82)
48 - - - - - - -
19 - + - - - - -
8 - - - + - - -
7 - - + - - - -

+, positive; -, negative.

Table 4. Results from Rapid Polymyxin NP Test, Colistin Minimal Inhibitory Concentration,

and Genes Involved in Colistin Resistance

n Rapid Polymyxin NP Colistin MIC, mg/L mcr-1a mgrB genotype

Klebsiella pneumoniae
83 - Not determined Not determined Not determined
11 + 32 - Wild type
3 + 16 - Wild type
1 + 32 - IS insertion
1 + 8 - Wild type
2 + 4 + Wild type

Escherichia coli
76 - Not determined Not determined Not determined

aAll isolates were negative for mcr-2, mcr-3, mcr-4, and mcr-5 genes.
MIC, minimal inhibitory concentration; +, positive; -, negative.
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its potential health threat due to multiple drug resistance.
The presence of K. pneumoniae ST307 was reported in
2019 in Mexico,45 but no other reports have been published
about this lineage in this country. Recently, 38 strains of
K. pneumoniae clinical isolates collected from 2010 to
2012 were sequenced in a Mexican pediatric hospital, and
24 different STs were identified. The most prevalent STs
were ST76 (n = 6), followed by ST70 (n = 4). One ST4839
was detected, but there was no detection of ST307.48

Among A. baumannii isolates, the most frequent genes
detected were blaOXA-40, followed by blaOXA-23. Genetic
lineages of A. baumannii have been studied using two
MLST schemes with three genes in common, as reported
by Bartual et al (Oxford scheme)49 and by Diancourt et al
(Pasteur scheme).50 It has been reported that MLST analysis
based on the Pasteur scheme is more appropriate than the
Oxford scheme for population biology and epidemiological
studies.51 In our study, four strains were detected to be ST2

according to the Pasteur scheme (two ST369 and two
ST208, according to the Oxford scheme). Previous reports
have indicated that A. baumannii ST2 is predominant in
human samples in Germany52 and is widely distributed
in Pakistan and Iran.53–55 A. baumannii ST2 has been rela-
ted to multidrug resistance, including colistin resistance in
South Africa.56 In Mexico, the most frequently reported is
ST156 (27.27%, 24/88).57

MLST is the standard method for epidemiological surveys
on P. aeruginosa outbreaks worldwide,58 with outbreaks by
ST235 and ST357 strains reported in many countries.59,60 In
the present study, no predominant ST was detected among
the five strain types (ST111, ST260, ST274, ST983, ST309)
for P. aeruginosa, but the presence of ST111 is quite rele-
vant because it is a major international high-risk P. aerugi-
nosa clone, in addition to ST175 and ST235.

P. aeruginosa ST111 has been described as a high-
risk strain resistant to multiple antibiotics, including

FIG. 1. Distribution of
antibiotic resistance for
samples collected from
blood, respiratory specimens,
and urine.
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carbapenem, and has been associated with outbreaks in
health care settings worldwide.61–65 Furthermore, the ST111
clone has been described to have increased capacity to form
a biofilm, and this virulence factor may contribute to clonal
dominance.66

Regarding E. coli, the most frequent carbapenemase-
encoding gene was blaNDM (blaNDM-5), and ST167 was the
most frequent lineage detected (associated with NDM-5).
NDM-5 had been primarily identified in multidrug-resistant
E. coli in the United Kingdom and has been reported to have
more activity over carbapenems than NDM-1.4 The ST167
clonal lineage is common among NDM-5-producing E. coli
isolates, being identified in many different countries includ-
ing China, Italy, Egypt, Switzerland, and Germany.67–71

In light of the COVID-19 pandemic, the carbapenem
resistance rate for K. pneumoniae has been reported to be
75.5% in China.72 Previous studies in Mexico showed a low
frequency of carbapenem resistance in Enterobacterales,
with meropenem resistance near 3% in E. coli and 12.5%
in K. pneumoniae.73 However, carbapenem resistance increa-
sed immediately after the COVID-19 pandemic, with values
as high as 21.4% in K. pneumoniae recovered from blood.74

In the present study, resistance rates for imipenem and mero-
penem were 18.3% and 11.3%, respectively, in K. pneu-
moniae recovered from blood.

Colistin resistance had previously been identified in
NDM-1-producing K. pneumoniae in Mexico.20 Probably,
the overuse of colistin in infections by bacteria resistant
to carbapenems and the circulation of NDM-1-producing
K. pneumoniae have favored the emergence of these poten-
tially pandrug-resistant strains.

Although mgrB gene modification is the main mechanism
of colistin resistance in K. pneumoniae in the Americas,20

we only identified this mechanism in one isolate. Further
characterization is necessary to understand the other mech-
anisms of colistin resistance identified in this study. How-
ever, we also identified two K. pneumoniae isolates carrying
the mcr-1 gene; this represents the second report of mcr-1
in clinical isolates in Mexico75 and the first report in
K. pneumoniae.

Distribution of clones was observed in the species
included in the study; this distribution of clones is observed
by the hospital and by bacterial species. For A. baumannii,
several clones were detected, with isolates from each of the
clone distributed on the same center

In the case of P. aeruginosa, many clones were identified
but with a reduced number of isolates in each clone, as in
E. coli. Therefore, we consider that the dissemination of
carbapenemase-encoding genes in the bacterial species inclu-
ded in this study could be due to clonality and possibly to
the dissemination of mobile genetic elements such as plas-
mids that contribute to their dissemination.

There are limitations to our study. First, there is insuffi-
cient information from all states from Mexico; thus, we were
not able to assess the frequency of carbapenem resistance
encoding genes on a truly national scale, and second, some
antibiotic resistance mechanisms remained unidentified.

Conclusions

We detected a circulation of K. pneumoniae NDM and
E. coli NDM in centers in Mexico. We identified high

virulence ST types, such as K. pneumoniae ST307, E. coli
ST167, P. aeruginosa ST111, and A. baumannii ST2 (Pas-
teur). Resistance to colistin was identified in carbapenemase-
producing K. pneumoniae isolates, with nonidentified
molecular mechanisms being the main one, followed by
the mcr-1 gene. These results are relevant in clinical practice
to guide antibiotic therapies considering the molecular mech-
anisms of resistance to carbapenems and will contribute to
optimize antibiotic stewardship programs.
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40. Schaufler K, Nowak K, Düx A, et al. Clinically rele-
vant ESBL-producing. Front Microbiol 2018;9:150; doi:
10.3389/fmicb.2018.00150

41. Long SW, Olsen RJ, Eagar TN, et al. Population genomic
analysis of 1,777 extended-spectrum beta-lactamase-
producing. mBio 2017;8(3):e00489-17; doi: 10.1128/mBio
.00489-17

42. Baek EH, Kim SE, Kim S, et al. Successful control of an
extended-spectrum beta-lactamase-producing Klebsiella
pneumoniae ST307 outbreak in a neonatal intensive care
unit. BMC Infect Dis 2020;20(1):166; doi: 10.1186/
s12879-020-4889-z

43. Kim JO, Song SA, Yoon EJ, et al. Outbreak of KPC-2-
producing Enterobacteriaceae caused by clonal dissem-
ination of Klebsiella pneumoniae ST307 carrying an
IncX3-type plasmid harboring a truncated Tn4401a.
Diagn Microbiol Infect Dis 2017;87(4):343–348; doi:
10.1016/j.diagmicrobio.2016.12.012

44. Boonstra MB, Spijkerman DCM, Voor In ‘t Holt AF, et al.
An outbreak of ST307 extended-spectrum beta-lactamase
(ESBL)-producing. Infect Control Hosp Epidemiol 2020;
41(1):31–36; doi: 10.1017/ice.2019.304

45. Bocanegra-Ibarias P, Garza-González E, Padilla-Orozco M,
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