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Abstract In semiarid agricultural regions, aquifers have watered widespread economic development. 

Falling water tables, however, drive up energy costs and can make the water toxic for human consumption. 

The study area is located in central Mexico, where arsenic and fluoride are widely present at toxic 

concentrations in well water. We simulated the holistic outcomes from three pumping scenarios over 100 years 

(2020–2120); (S1) pumping rates increase at a similar rate to the past 40 years, (S2) remain constant, or (S3) 

decrease. Under scenario S1, by 2120, the depth to water table increased to 426 m and energy consumption for 

irrigation increased to 4 × 10 9 kWh/yr. Arsenic and fluoride concentrations increased from 14 to 46 μg/L and 

1.0 to 3.6 mg/L, respectively. The combined estimated IQ point decrements from drinking untreated well water 

lowered expected incomes in 2120 by 27% compared to what they would be with negligible exposure levels. 

We calculated the 100-year Net Present Value (NPV) of each scenario assuming the 2020 average crop value 

to  
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gain increased when combined with decreased pumping (S3). If a high value, low water footprint crop was 

substituted (broccoli, 1.51 USD/m 3), the net gains from increasing pumping were similar in size to those of 

implementing blanket drinking water treatment. 

Plain Language Summary Groundwater is jointly used by for-profit agriculture and domestic 

households for drinking water. Although agriculture creates jobs and stimulates investment, preventing the 

exposure of children to neurotoxins in drinking water generally means a more prosperous future. We calculate 

falling water tables, rising energy costs, increasing concentrations of naturally occurring neurotoxins, 

decreasing IQ and earnings for people living in the basin owing to different rates of pumping by agriculture. 

For the different pumping scenarios, we calculate the increase or decrease in revenue for the agriculture sector. 

We then calculate the net economic gain from increasing or decreasing pumping rates, growing alternative 

crops, and treating drinking water to remove the neurotoxins. We found that people's personal incomes will be 

ever-more reduced by their exposure to higher concentrations of neurotoxins. The benefits of treating water to 

remove the neurotoxins are much greater than the costs. Furthermore, increasing pumping rates is only 

profitable over the long term if it is accompanied by growing much higher value and lower water demand crops 

to arsenic and fluoride from overexploited aquifers. GeoHealth, 6, e2022GH000592.  −5.96water footprint ratio of 0.12 USD/m × 10 9 and 1.51 × 10 9 USD, 

respectively, compared to the base case (S2). The relative NPV of providing  . Without drinking water mitigation, S1 and S3 yielded relative NPVs 

of  

https://doi.org/10.1029/2022GH000592 blanket reverse osmosis treatment, while keeping pumping constant (S2), was 11.55 × 10 9 USD and this  
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1. Introduction 

In semiarid regions, aquifers are commonly the most important water source for irrigation and domestic water 

use. In the global south, there is little public information to inform individual households about the quality of the 

groundwater they are drinking and the possible related health risks (Nowicki et al., 2020). This is alarming as we 

know that many aquifers around the world contain toxic concentrations of dissolved geogenic elements such  
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than are currently being irrigated 

in the study area. The most 

urgent issue, at least from an 

economic growth perspective, is 

not limiting pumping but rather 

treating the drinking water. 
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as arsenic (As) and fluoride (F) 

(Amini et al., 2008a, 2008b; 

Nordstrom, 2002; Smedley & 

Kinniburgh, 2002). Specifically, 

areas that overlie subduction or 

rift zones with shallow 

geothermal heat and little rain 

commonly have toxic levels of 

both As and F. Examples are 

found within Central and South 

America, the Main Ethiopian 

Rift Valley, and Central China 

(Alarcon-Herrera et al., 2013, 

2019; Bundschuh et al., 2010; 

Rango et al., 2013; Xing et al., 

2022). 

Not only is water quality 

information rarely provided to 

the consumers of groundwater, 

regular monitoring programs that 

publicly report their findings are 

generally absent. The lack of 

maps that detail physical 

hydraulic properties of the aquifers and their water chemistry makes it difficult for water managers to anticipate 

changes to water quality within the world's overexploited aquifers. Ignoring these costs may lead to 

miscalculating the overall benefit to semiarid and arid regions by engaging in agro-export. Measuring long-term 

well water chemistry trends is costly and requires sustained funding that typically only well-funded government 

agencies in rich countries possess. Decades of monitoring by the United States Geological Survey's National 

Water-Quality Assessment Program revealed the tendency for As concentrations to rise in production wells with 

high pumping rates (Ayotte et al., 2011). To the authors' knowledge, nothing at this scale has been executed in 

the developing world. 

When an aquifer is overexploited, the economic costs noticed by stakeholders are increasing drilling and pumping 

costs to access the falling water table. The rate at which these costs increase over time tends to be linear and 

therefore predictable. A second economic impact, however, is rarely accounted for in decision-making: water 

quality deterioration as a function of overexploitation. This process directly relates to socio-economic costs of 

public health and productivity of the regional labor force. We hypothesize that a more complete accounting of 

how each sector impacts and is impacted by the common pool resource of potable groundwater will permit the 

optimization of these resources for all stakeholders (Harou & Lund, 2008; Ostrom, 1990). 

Therefore, the goal of this study is to simulate the costs, benefits, and Net Present Values (NPVs) of different 

pathways forward for populations depending on heavily exploited aquifer systems with geogenic contaminants. 

NPVs are used to economically compare the various scenarios over a 100-year time period. Future costs and 

benefits are expressed in dollars and discounted to give more weight to near-term consequences than those 

occurring far in the future. This reflects human preferences and the opportunity costs of money. Commonly used 

discount rates range from 3% to 5% per year (Carter & Nesbitt, 2016), though rates as low as 1% have been used 

for very long-term analyses (Stern, 2007). 

To account for economic and noneconomic tradeoffs, we developed an innovative hydrologic-public health-

economic system dynamics model that builds on concepts introduced in previously published socio-economic-

hydrologic models (Elshafei et al., 2015; Harou et al., 2009; Srinivasan et al., 2010). The goals for building these 

past models include simulating tradeoffs between risks of crop failure versus short-term profit in the context of 

a shallow salinizing aquifer-river system to help inform the farmer's crop choice (Lefkoff & Gorelick, 1990); 

estimating the relative dominance of opposing feedbacks between economic growth and environmental 

degradation on the one hand (positive feedback loop) and human community sensitivity to their environment and 

ecosystem health on the other (negative feedback loop) (Elshafei et al., 2015); and modeling household water 

sourcing behavior and their impacts on the water table during a drought underlying a megacity (Srinivasan et al., 

2010). 

Whereas the link between groundwater scarcity and quality has been explicitly studied in several of these models, 

the economic impacts of the water quality deterioration has mainly focused on the reduction in crop yield (Lefkoff 

& Gorelick, 1990) or increased costs for desalinization of irrigation water (Cai, 2008). To the authors' knowledge, 

no hydrologic-economic study has explicitly modeled the impacts of deteriorating water quality on human health. 

In this simulation study, we explore the tradeoffs between revenue generated through groundwater pumping for 

agro-export crops and the water supply and quality, energy demands for pumping, human health, and the 

economic costs that this activity imposes on the local population who consumes the water. These impacts are 

presented in their native units (e.g., meters, mg/L, kWh, IQ point decrements, and USD) as well as in discounted 

economic terms (USD) over the 2020–2120 planning horizon for comparison. 

The two principal contaminants of concern considered from a human health perspective are geogenically and 

geothermally sourced dissolved As and F (Knappett et al., 2020; LaFayette et al., 2020). Both of these 

contaminants cause a wide range of serious and deadly diseases (Argos et al., 2010; Ayoob & Gupta, 2006; Sage 

et al., 2017). Arsenic is a carcinogen and also causes vascular diseases. Low levels of F in water are beneficial 

for  

reducing cavities (Rosin-Grget et al., 2013; WHO, 2019), but higher levels of exposure drives tooth and skeletal 

fluorosis especially in children with developing bones (Ayoob & Gupta, 2006) and may contribute to negative 

health outcomes in vulnerable adult populations with diabetes and chronic kidney disease (Pratap & Singh, 2013). 
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Although these health impacts are serious, at the low to medium levels of exposure that are common throughout 

the study region (10–100 μg/L As, 1–4 mg/L F) (Alarcon-Herrera et al., 2019), the best quantified impacts of 

these toxins, at present, are the neurotoxic effects on childhood cognitive development (Rocha-Amador et al., 

2007; Wasserman et al., 2004, 2014). Exploring the costs of this exposure is relevant since toxic concentrations 

of As and F commonly co-occur in semiarid and arid regions with shallow geothermal heat (Alarcon-Herrera et 

al., 2013, 2019; Amini et al., 2008a, 2008b; Ayoob & Gupta, 2006; Bustingorri & Lavado, 2014; Guo et al., 

2008; Podgorski et al., 2017, 2018; Rango et al., 2010, 2013; Reyes-Gomez et al., 2013; Saeed et al., 2021; Xing 

et al., 2022). The concentrations of these toxins in well water may rise over time owing to overexploitation of the 

aquifers in semiarid and arid regions by pumping for irrigation (Ayotte et al., 2011, 2015; Knappett et al., 2020; 

Smith et al., 2018). The model presented in this study explicitly calculates IQ point decrements owing to different 

exposure levels to each toxin and ignores the many serious illnesses caused by these. The model calculates the 

impacts of exposure to As and F in drinking water on childhood IQ loss and therefore lost income. Published 

dose-response curves from empirical epidemiology studies are applied to calculate IQ point decrements in the 

population owing to present-day and predicted As and F concentrations. This approach follows that used to justify 

the costly phasing out of lead in gasoline by the US EPA (Grosse et al., 2002; Schwartz et al., 1985). This 

approach was later utilized to calculate lost incomes throughout Low and Middle Income Countries owing to the 

prolonged period of phasing out lead from gasoline and other products (Attina & Trasande, 2013). 

We developed a system dynamics model based on the overexploited Upper Rio Laja Watershed in the state of 

Guanajuato, central Mexico. Toxic levels of As and F have been present near the water table in this basin at least 

as far back as the 1990s (Ortega-Guerrero, 2009), but their concentrations appear to be increasing owing to the 

falling water table and mixing of geothermally influenced waters with shallow meteoric water via long-screened 

wells (Knappett et al., 2020). We leverage data we have assembled through our diverse teams working in this 

basin for 10 years. These data include basin-wide demographic data, electricity subsidies, and water governance 

structures (Hoogesteger & Wester, 2017); irrigation needs for commonly grown crops (Torres Padilla, 2021); 

historical pumping rates and water table declines (Li et al., 2020); the distribution of As and F concentrations 

across time and space (Knappett et al., 2020); empirically measured dose-response curves of IQ reduction 

associated with childhood exposure to varying As and F concentrations in drinking water (Rocha-Amador et al., 

2007);  and the costs of the two most widely used drinking water mitigation options in Mexico (Del Razo et al., 

2018). 

In this basin, over 80% of pumped groundwater is used to irrigate mostly agro-export crops. Therefore, outside 

investors and international market prices drive the majority of the pumping. The objective of this study is to 

generate new insights into the tradeoffs of different policy interventions in the areas of safe domestic water 

supply, health, and economic development. Based on past pumping rates of the agriculture sector and to stimulate 

debate over the benefits of changing the status quo, we developed and ran the model as a simulation with three 

future pumping scenarios: (S1) pumping continues to increase at a rate consistent with past decades; (S2) 

pumping rates are unchanged from 2020; and (S3) pumping rates decrease steadily. We then calculate the lift 

height, water quality, IQ point decrements, energy demand, and economic costs and benefits for the rural 

households and farms in the basin over a 100-year timeframe with and without mitigation of drinking water. We 

then varied crop type to reveal the impact of crop value and crop water footprint on the outcome. We summarize 

the results by comparing the NPV of each pumping and treatment scenario over the next 100 years relative to the 

baseline S2 pumping scenario with no treatment. 

2. Methods and Data 

2.1. Description of System Dynamics Model 

The model takes into account the impacts of irrigation pumping on lift height, well water As and F concentrations, 

drinking water quality, child IQ, and household wealth of the residents in an agricultural basin where there is a 

link between falling water tables and rising concentrations of geogenic contaminants (Figure 1). Lift height, As 

and F concentrations, population IQ, and household income are all stocks or proxies for stocks in the model 

(Figure 1). The upstream side of the model (left side) quantifies how irrigation pumping benefits the farms and  
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Figure 1. System dynamics model describing the impacts of irrigation pumping on the stocks (black boxes) lift height, well water As and F concentrations, child IQ and 

household wealth of the residents in an agricultural basin in a semi-arid region. The polarity of the causal relationship is indicated with a + or – sign. Gray flows 

represent processes and outcomes that are not included in the present study. Gray shaded circles represent economic stocks and flows that were used to calculate the Net 

Present Value of each simulation scenario. 

businesses that pump while simultaneously imposing a cost on themselves in the form of energy costs due to 

greater lift heights, which cuts into farm profit (Li et al., 2020). 

Irrigation pumping imposes two types of costs on all aquifer stakeholders (right side of Figure 1): costs to access 

the water and costs from consuming the water with deteriorating quality. Costs associated with accessing deep 

and falling water tables include well modifications (new well drilling, well deepening, and pump replacement or 

lowering) and energy costs from lifting water to the surface. The second cost is the impaired cognitive 

development from drinking well water directly or, alternatively, the costs of mitigating exposure to the well water 

through purchasing bottled water privately or investing in centralized water treatment. This adds to the overall 

energy costs the community must pay for access to safe water. The increased costs of accessing, consuming, 

replacing, or treating the water depresses the household wealth stock. 

The pumping scenarios and mitigation options that are considered in the model are described in Table 1. In 

pumping scenario S1, water tables will continue to fall, electricity costs will rise for farmers, geogenic As and F 

concentrations will rise, childhood IQ of the population drinking from the aquifer will be reduced, and lifetime 

earnings in the region will decrease. Thus, pumping for profit will depress the long-term rate of growth of incomes 

for the general population compared to what that growth could have been if another economic activity with a 

smaller water demand had generated the same amount of wealth for the local population as the agriculture 

industry does today. Investments in new irrigation efficiency technologies may enable this region to stabilize the 

pumping rates (S2) or even reduce them if more efficient irrigation is combined with growth in lower water 

demand sectors of the economy (S3). The three mitigation approaches considered are (a) bottled water paid for 

by individual households, (b) centralized water treatment paid for by a community (0% subsidy), and (c) 

centralized water treatment paid for by state and federal government (100% subsidy). 

Table 1  
Pumping Scenarios and Mitigation Options Considered in the System Dynamics Model 

Pumping scenario ID Description Mitigation ID Description 

S1 Pumping increases 1.4 × 107 m 3/yr A Private bottle water supply 

S2 Pumping remains constant B Centralized water treatment − 0% subsidy 

S3 Pumping decreases 0.4 × 107 m 3/yr C Centralized water treatment − 100% subsidy 
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Figure 2. (a) Arsenic concentrations in 137 wells sampled in 2016 in the independence Basin (large colored circles) overlain on contoured concentrations of 246 wells 

sampled in 1999 (black circles). The locations of major faults are noted. Urban areas are indicated with cross-hatching. (b) Cumulative histogram of As concentrations 

in 1999 (blue) and 2016 (red). Arsenic drinking water limits of WHO and Mexican Government indicated by black vertical dashed lines. 

2.2. Study Area 

2.2.1. Physiography, Geology, and Hydrology 

The Upper Rio Laja River watershed is also known as the Independence Basin (Ortega-Guerrero, 2009) (Figure 

2; Figure S1 in Supporting Information S1). It is encircled and underlain by mountain ranges composed of 

volcanic rock and extinct volcanoes. The total relief of the basin ranges from 1,900 to 3,000 masl. The upper 

several hundred meters of the relatively flat central part of the basin is composed of poorly consolidated sandstone 

and conglomerate eroded from the surrounding mountains. Numerous normal faults create grabens and half 

grabens, which are infilled with sediment (Castro et al., 2021; Del Pilar-Martinez et al., 2020; Del Rio et al., 

2020). This basin is typical of other semi-closed basins throughout the Central Highlands of Mexico (Del Rio et 

al., 2020; Loza-Aguirre et al., 2012). The low-lying, middle area of the basin is intensively irrigated with 

groundwater for growing crops. 

The basin has only one outlet, which is regulated at the Ignacio Allende Dam. The Ignacio Allende reservoir is 

adjacent to the largest and fastest growing city in the basin, San Miguel de Allende. The basin has a surface area 

of approximately 6.84 × 10 9 m 2 (6,840 km 2) and receives 580 mm of rainfall annually (Mahlknecht et al., 2004). 

The National Commission for Water (CONAGUA) jointly manages the surface and groundwater resources in 

this basin by dividing the basin into four administrative aquifer zones. These are the Cuenca Alta del Rio Laja, 

Dr. Mora y San Jose Iturbide, Laguna Seca (LS), and San Migual de Allende (Figure S1 in Supporting 

Information S1). 

2.2.2. Population, Employment, Economy, and Politics 

Approximately 744,000 people live in the basin spanning seven municipalities: San Miguel de Allende, Dolores 

Hidalgo, San Luis de la Paz, San Diego de la Union, Doctor Mora, San Jose Iturbide, and San Felipe (INEGI, 

2021). Agriculture in the state of Guanajuato accounts for approximately 4.6% of economic output and employs 

13% of the working population. 
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Table 2  
Descriptions of Equations Used in the Systems Model 

   

Process name Equation  # 

Hydrologic Cycle 𝐴𝐴 = 𝐸𝐸𝐸𝐸 + 𝐼𝐼 + 𝑅𝑅   1 

Vertical Recharge—water budget method 𝐴𝐴𝑣𝑣 = 𝑄𝑄𝑡𝑡 + (𝐻𝐻𝑡𝑡−1 − 𝐻𝐻𝑡𝑡)𝑆𝑆𝑦𝑦 

− 𝑄𝑄ℎ  
 2 

Recharge—chloride mass balance method (Clark & Fritz, 1997)   𝑐𝑐𝑐𝑐 . 

𝐴𝐴 = precip 𝑃𝑃  
𝑐𝑐𝑐𝑐 

gw 

 3 

Annual groundwater deficit  𝐴𝐴𝑡𝑡 = 𝑄𝑄𝑡𝑡 − 𝐼𝐼   4 

Lift Height as a function of groundwater deficit  𝐷𝐷 

𝐴𝐴𝑡𝑡 = 𝐴𝐴𝑜𝑜 − 𝑡𝑡  
𝑆𝑆𝑦𝑦𝐴𝐴 

 5 

Energy consumed by irrigation pumping (Scott, 2011)  𝐾𝐾𝐾𝐾 𝐻𝐻 

𝐴𝐴𝑡𝑡 = 438+ 𝑡𝑡 𝑡𝑡  
𝑒𝑒 

 6 

Total dynamic head for pumping groundwater (extended Bernoulli equation) (Weiner & 

Matthews, 2003) 𝐴𝑇𝑇𝑡𝑡 

 𝑣𝑣2 𝑃𝑃 

=  + 𝑑𝑑 + 𝐻𝐻𝑡𝑡 − 𝐴𝐿𝐿  
 2𝑔𝑔 𝛾𝛾 

 7 

Price of energy for pumping groundwater for a given sector with subsidization rate SE (Scott, 2011) 𝐴𝐴𝐸𝐸𝑡𝑡 = 𝑅𝑅𝐸𝐸𝐸𝐸𝑡𝑡 (1 − 𝑆𝑆𝐸𝐸)   8 

Total cost for drilling new wells to reach water table during year t 𝑑𝑑𝐻𝐻 
Δ𝐴𝐴 

𝐴𝐴well𝑡𝑡 = (𝐻𝐻𝑡𝑡 + 𝑧𝑧𝑜𝑜)( well )( 𝑑𝑑𝑡𝑡 ))( 
POP𝑡𝑡 
 Δ𝑧𝑧 𝑧𝑧𝑜𝑜 popwell 

𝑄𝑄 

+ ag𝑡𝑡 
)
  

𝑞𝑞 
well 

9 

Crop mass produced per volume of water (Hoekstra et al., 2011)  𝑄𝑄 

𝐴𝐴𝑡𝑡 = sag  
𝑠𝑠 

 10 

Concentration of contaminant 
𝐴𝐴

 at depth  𝐴𝐴𝑖𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑖𝑖   11 

Concentration of contaminant 
𝐴𝐴

 with mixing in a long-screen well  𝑘𝑘 𝐻𝐻 

 𝐴𝐴𝑖𝑖𝑖well (𝐻𝐻𝑡𝑡𝑖𝑧𝑧) = 𝑖𝑖

 𝑡𝑡+𝑘𝑘𝑖𝑖𝑧𝑧  
2 

 12 

IQ point decrement as function of childhood exposure to concentrations of contaminant 
𝐴𝐴

 in drinking 

water (Wasserman et al., 2004) 

 IQdecr,𝑡𝑡 = 𝐼𝐼𝐼𝐼𝑜𝑜 − 𝛽𝛽𝑖𝑖 

(log𝑒𝑒𝐶𝐶𝑖𝑖,𝑡𝑡)  
 13 

Personal income at time t  In𝑝𝑝𝑝𝑝𝑝 = In𝑝𝑝𝑝𝑝𝑝𝑜𝑜 (1+ 𝑘𝑘𝐼𝐼𝐼𝐼)𝑝𝑝   14 

Fractional reduction of personal income as function of IQ decrements (Grosse et al., 2002)  ( ∆𝐼𝐼𝐼𝐼 ) 

 ( ∆𝐼𝐼𝐼𝐼 ) 𝐼𝐼𝐼𝐼   

 = (IQdecr,𝑡𝑡) 
 𝐼𝐼𝐼𝐼 𝑡𝑡 ∆𝐼𝐼𝐼𝐼 

 15 

Reduced personal incomes from IQ decrements (Attina & Trasande, 2013)  In𝑝𝑝𝑝𝑝𝑝 = In𝑝𝑝𝑝𝑝𝑝𝑜𝑜 (1 + 𝑘𝑘𝐼𝐼𝐼𝐼)𝑝𝑝 (1 − 

∆In )  

 In 𝑝𝑝 

 16 

Personal income subtracting cost of mitigation  In𝑝𝑝𝑝𝑝𝑝 = In𝑝𝑝𝑝𝑝𝑝𝑜𝑜 (1 + 𝑘𝑘In)𝑝𝑝 − 𝑇𝑇 

(𝐶𝐶𝑖𝑖)  
 17 

Population growth rate  POP𝑡𝑡 = POP𝑜𝑜𝑒𝑒𝑘𝑘pop𝑡𝑡   18 

2.3. Components of the Model 

Mathematical equations that describe each process included in the model are described in Table 2 and the meaning 

and values of each parameter are in Table 3. In the following sections, the empirical data and theory used to 

constrain model subprocesses are described for this study area. 
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2.3.1. Hydrologic Cycle 

Between 1980 and the present, the water tables have fallen at an average rate of 1.65 m/year (Figure S2 in 

Supporting Information S1) (Li et al., 2020). New wells must be drilled to reach the falling water table. Thus 

over the period from 1975 through 2012, well depths deepened at approximately the same rate water tables fell 

(Figure S3b in Supporting Information S1). The median standing water height in the wells is 100 m (zo), which 

is the distance below the water table (Ht) (Knappett et al., 2018). 

The average rate of water table decline across the basin depends on the rate of recharge (I), the rate of pumping 

(Qt), and specific yield (Sy) of the aquifer. The hydrologic cycle equation (Equation 1 in Table 2) describes the 

water budget for this basin. The annual volume of rain falling on the basin (P) was approximated by multiplying 

the area of the basin with the average annual rainfall (580 mm) (Mahlknecht et al., 2004) (Figures S4 and S5 in 

Supporting Information S1). This is equal to 4.56 × 10 9 m 3/year. On average, only 6.7 × 10 6 m 3/year flowed 

out of the basin (R) over the Ignacio Allende Dam during the period from 2005 through 2013 (unpublished data 

from CONAGUA). The remaining water exits the basin as evaporation and transpiration (ET) or infiltrates (I) to 

recharge the aquifer. 

Recharge estimates were drawn from studies that used two different techniques, namely vertical recharge 

(Equation 2 in Table 2) and the chloride mass balance approach (Equation 3 in Table 2). The vertical recharge 

method multiplies the annual change in water table elevation by Sy and subtracts the water volume that entered 

the aquifer  

 

Table 3  
Parameters and Initial Conditions Used in Systems Model 

  

 Variable Variable description Units 

Initial, Fixed or Fitted value (range 

of likely values) 

Hydrogeology and geochemistry 

  
𝐴𝐴

  Area of basin [m2]  6.84 × 10 9 

 
𝐴𝐴

  
Annual basin-wide precipitation (P = A × average annual rainfall 580 mm (500–610)) (Figure S5 in  

Supporting Information S1) 
[m3]  3.98 × 10 9 (3.42 25, 4.17 75 × 10 9) 

 𝐼𝐼∕𝑃𝑃  Fraction of P that Recharges aquifer (Mahlknecht et al., 2004) [−]  0.052 (0.04 L, 0.073 H) 

 
𝐴𝐴

  
Annual basin-wide aquifer recharge [m3]  2.07 × 10 8 (1.59, 2.91 × 10 8) 

 𝐴𝐴𝑣𝑣  Vertical recharge occurring directly to a defined area of an aquifer [m3]   

 𝐴𝐴𝐴𝐴  Annual evapotranspiration [m3]  3.77 × 10 9 (3.69, 3.82 × 10 9) 

 
𝐴𝐴

  
Annual basin-wide runoff [m3]  6.77 × 10 7 

 𝐴𝐴ℎ  Horizontal flow into a defined area of an aquifer [m3]   

 𝐴𝐴𝑡𝑡  Annual basin-wide pumped groundwater for all sectors [m3]   

 𝐴𝐴𝑎𝑎𝑎𝑎𝑜𝑜  Basin-wide pumped groundwater for agriculture in 2020 (CONAGUA, 2020e) [m3]  4.63 × 10 8 

 𝐴𝐴res𝑜𝑜  Basin-wide pumped groundwater for residential use in 2020 (CONAGUA, 2020e) [m3]  4.52 × 10 7 

 

𝐴𝐴𝐴𝐴precip.  
Chloride concentration in rainfall 

[ mgL ]  
0.16 

 𝐴𝐴𝐴𝐴gw  Chloride concentration in well water 
[ mgL ]  

 

 𝐴𝐴𝑡𝑡  Lift height from water table to surface [m]  Ho = 100 (70 25,150 75) 

 𝐴𝐴𝑡𝑡  Annual basin-wide groundwater recharge deficit [m3]   

 𝐴𝐿𝐿  Dynamic head loss owing to friction [m]   

 𝐴𝐴𝑦𝑦  Specific Yield (CONAGUA, 2020a, 2020b, 2020c, 2020d; Consultores en Geologia, S. A. d. C. 

V., 1992) 
[−]  0.04 (0.03, 0.05) 
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𝐴𝐴

  
Depth below ground surface [m]   

 𝐴𝐴𝑜𝑜  Length of wells below water table [m]  zo = 100 (49 25, 163 75) 

 𝐴𝑇𝑇𝑡𝑡  Total dynamic head [m]   

 𝐴𝐴𝑖𝑖𝑖𝑖𝑖  Median contaminant concentration in wells at time t [ 𝜇𝜇g ]or[ mg ]  

 L L 

13.9 (As), 0.99 (F) (2020), 9.7 (As),  

0.70 (F) (1999) 

 𝐴𝐴𝑖𝑖  
Linear rate of increase of contaminant 

𝐴𝐴
 concentration with depth in aquifer z [ 𝜇𝜇g ∕m]  

L 

0.0953 (0.0927 LB,0.0979 UB) (As),  

0.0072 (0.0056 LB,0.0088 UB) (F) 

Public health an 

 𝐴𝐴𝐴𝐴𝑡𝑡  

d human development 

Median population IQ at time t [1 ∶ 100]  

 

 𝐴𝐴𝐴𝐴𝑜𝑜  Default IQ  100 

 𝐴𝐴𝑖𝑖  
IQ point decrements per log𝑒𝑒 [

𝐶𝐶
𝑖𝑖𝑖𝑖𝑖] (Rocha-Amador et al., 2007; Wasserman et al., 2004)  −1.65 (−1.24, −2.06) (As), −10.1 

(−7.6, −13.9) (F) 

( ∆𝐼𝐼𝐼𝐼 )  

 

𝐼𝐼𝐼𝐼  
∆𝐼𝐼𝐼𝐼 

Fractional suppression of income per IQ decrement (Grosse et al., 2002) [IQpoint−1]  0.02 (0.015, 0.025) 

 𝐼𝑛𝑝,𝑡  Per capita income at time t [USD]   

 𝐼𝑛𝑝,𝑜  Median 2020 per capita income in rural Guanajuato (also poverty line) [USD]  1,165 

 𝐼𝑛𝑝,mit  Expected per capita income after drinking water quality mitigation [USD]   

 LE  Life expectancy in Guanajuato (2020) [yr]  76 

Economics 

 𝐴𝐴In  Personal income growth rate [yr−1]  1 

 𝐴𝐴pop  Population growth rate [yr−1]  0.01 

 POPo  Initial population of basin in 2020 [people]  744,000 

Table 3 Continued 

Initial, Fixed or Fitted value (range  
Variable Variable description Units of likely values) 

 popwell  Number of people utilizing each municipal supply well [ peoplewell ]  710 25, 1,250 50, 1,600 75, 10,000 (San  

Miguel de Allende) 

 
𝐴𝐴

well  Median annual pumped volume for irrigation wells in the basin [ myr3 ]  95,000 50 

 Δ 𝑃𝑃
Δwell𝑧𝑧  New water production well drilling and installation cost per meter [ USDm ]  293 

 
𝐴𝐴

𝐸𝐸𝑡𝑡  Price of electricity to irrigate crops 
[USD]

  

 𝑇(𝐶𝑖)  Water treatment cost for contaminant 
𝐴𝐴 

[ person−yrUSD ]  127 (Bottled), 18 (Centralized RO) 

 
𝐴𝐴

crop𝑖𝑖  Market price for crop i (SIAP, 2020) [ tonneUSD ]  182 vw, 243 25, 434 50, 737 75, 448  

(broccoli) 

 
𝐴𝐴

  Water use efficiency (Mekonnen & Hoekstra, 2011, 2013) [ tonnem3 ]  1,549 vw, 326 25, 477 50, 1538 75, 296  

(broccoli) 

 
𝐴𝐴

𝐸𝐸  Unsubsidized energy rate or tariff (SENER, 2018) [ USDkwh ]  0.017 

 
𝐴𝐴

ag𝑡𝑡  Energy consumed for irrigation pumping [kwh]  
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𝐴𝐴

dom𝑡𝑡  Energy consumed for domestic pumping [kwh]  

 
𝐴𝐴

𝐸𝐸  Electricity subsidy (SENER, 2018) [−]  0.88 (agriculture), 0.65 (residential) 

 
𝐴𝐴

  Unit conversion term (Scott, 2011) [−]  0.0026 

 
𝐴𝐴

  Electromechanical pump efficiency (Scott, 2011) [−]  0.52 

 
𝐴𝐴

  Specific weight of water [ ft lb
3 ]  62.4 

Note.  L,HLow and High ends of observed range.  LB, UBLower and Upper Bounds of 95% Confidence Interval of fitted term.  vwVolume-weighted average.  25, 50, 75Percentiles 

of observed distribution of values. 

laterally by applying Darcy's Law to the observed hydraulic gradients and known transmissivity (T) of the aquifer 

(Equation 2 in Table 2). When this approach was applied on the four administrative aquifers comprising this 

basin, the total recharge in 2020 was calculated to be 3.35 × 10 8 m 3/yr (CONAGUA, 2020a, 2020b, 2020c, 

2020d) or 7.3% of total precipitation falling on the basin (Table 3). In contrast, the chloride mass balance 

approach (Clark & Fritz, 1997) assumes that the enrichment in chloride concentrations observed in groundwater 

(clgw) over rainfall (clprecip) is caused by ET (Equation 3 in Table 2). Using this technique, one study estimated 

basin-wide average recharge to be 1.98 × 10 8 m 3/yr (4.3% of P) (Mahlknecht et al., 2004). An independent 

analysis utilizing a more recent data set and excluding samples that appeared to be contaminated by chloride from 

geothermal sources based on the Cl:Br mass ratios (Alcala & Custodio, 2008; Knappett et al., 2018) found 

recharge to be 1.82 × 10 8 m 3/yr (4.0% of P). The average of these three independent estimates was utilized in 

the model (5.2% of P) (Table 3). 

In 2020 the median depth to the water table was 100 m (Ho) with 25th and 75th percentile depths of 70 and 150 

m, respectively (Li et al., 2020). Combined pumping rates (Qt) across the basin for agriculture (Qoag) and domestic 

(residential) (Qores) purposes in 2020 were obtained from CONAGUA (Table 3) (CONAGUA, 2020e) and used 

to calculate the water deficit (Dt) (Equation 4 in Table 2). This deficit translates to an increase in lift height of 

0.59 m/yr (Equation 5 in Table 2) if the reported pumping was evenly distributed across the entire basin. This 

calculation is impacted by three sources of bias. First, pumping is not distributed evenly but rather, is concentrated 

on the low-lying central part of the basin; so greater drawdown would be expected in the parts of the basin being 

pumped. Second, a range of Sy values have been reported across the basin but only a limited number of 

measurements are available (CONAGUA, 2020a, 2020b, 2020c, 2020d; Consultores en Geologia, S. A. d. C. V., 

1992; Ingenieros Civiles y Geologos Asociados, S. A., 1980). Third, the reported combined pumping rate does 

not account for pumping from unregistered wells, which are abundant, nor does it consider that farmers routinely 

pump more than their permitted volumes. In spite of these limitations, this water budget and the 2020 official 

pumping rates were used for the starting year of the model. 

2.3.2. Energy Consumed by Irrigation Pumping 

As the water table falls, more energy must be consumed to lift the water to the surface. The energy consumed (Et) 

varies with pump efficiency (e), lift height (Ht), and pumping rate (Qt) (Scott, 2011) (Equation 6 in Table 2). 

When lift height exceeds 50 m, it dominates the calculation of total dynamic head (hT) (Equation 7 in Table 2), 

since the kinetic energy and friction loss (hL) terms are negligible (Weiner & Matthews, 2003). 
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In this basin, most pumped groundwater (>80%) is used for irrigation of mostly agro-export crops. Therefore, 

outside investors and international market prices drive the majority of the irrigation pumping. The main cost 

increase is from drilling and lifting water to the surface. The state blunts the impact of rising electricity costs to 

irrigators by raising subsidies for farmers (Hoogesteger & Wester, 2017; Scott, 2011). Similarly, the state 

subsidizes the majority of the costs of constructing new community wells for domestic (municipal) supply. 

The price of energy (PEt) depends on the energy tariff (RE) and the rate of subsidization (SE), which is currently 

about 88% for the agriculture sector (SENER, 2018) (Equation 8 in Table 2). The nighttime pumping rate that 

farmers pay for irrigation is 0.02 USD/kWh (Scott, 2011), which has been stable over the last two decades 

(Hoogesteger & Wester, 2017; SENER, 2018). In 2018, the subsidized residential tariff for electricity in Mexico 

was approximately 0.06 USD/kWh (SENER, 2018). For comparison, in 2018, the industrial, services, and 

commercial sectors paid 0.08, 0.13, and 0.16 USD/kWh, respectively (SENER, 2018). Unlike residential and 

agriculture users, the tariffs for these sectors have been rising steadily over the past two decades. To confirm 

which tariff the communities in the basin pay for pumping their residential water supply, we compared the 

reported monthly electricity bills for 19 wells to the lift energy (Equation 6 in Table 2) based on the depth to 

water and the annual pumped volumes. This resulted in a median tariff of 0.16 USD/kWh, which suggests that 

communities pay the services tariff to pump their wells. 

2.3.3. Cost of New Well Installation With Falling Water Tables 

Falling water tables force well owners to deepen their wells or drill new ones. The cost of a 550 m deep well in 

the 137 well database that was collected in the field was installed in a community in the LS administrative zone 

in the eastern part of the basin. Here the water table is 150 m below the ground surface. The well was publicly 

reported to cost 161,200 USD, fully installed. The community provided 10% of the cost, and the state and federal 

governments paid 10% and 80%, respectively. Although this very deep well has a 14 inch outer casing diameter, 

it is only set to pump at a rate of 6.5 L/s. This pumping rate is on the low end for this basin. Pumping rates of 

urban supply wells commonly range from 30 to 100 L/s, but much lower pumping rates are typical for small 

communities that require smaller volumes of water (see Figure 5 in Knappett et al., 2020). This well replaced a 

previous well that was 170 m deep and was installed in 1985 and had since gone dry. This cost of the new well 

installation is approximately 293 USD/m (Table 3). Other new wells in the region had a similar cost per meter of 

completed production well. For comparison, this amount is approximately one third of the cost per m of installing 

a fully fitted 300 m water well for irrigation in the Central Valley, California (1,083 USD/m) (Howard, 2014). 

The upper geologic material in each basin is poorly consolidated sedimentary rock and therefore similar in terms 

of difficulty drilling. Detailed analyses of the drill cuttings from the LS well (Shepherd, 2018), surface geology 

map, and other reported borehole lithologies throughout the basin (Figures S6 and S7 in Supporting Information 

S1) (Figure 2 in Knappett et al. (2020)) suggest, however, that the unconsolidated sediment in the LS aquifer 

transitions to volcanic rock at 300 m depth. Thus, this number represents an average cost of drilling through 

sedimentary and volcanic rock. 

The annual cost of new well drilling as a function of the falling water table (Ht) was calculated using Equation 9 

(Table 2). This calculates the annual basin-wide price of new well drilling (Pwellt). This equation calculates the 

forced new well depths (Ht + zo) multiplied by the cost per m of the installed well to obtain the cost of a new well 

installed that year. This cost is then amortized over the lifetime of the well, which is calculated by the 

instantaneous rate of water table decline (dHt/dt) divided by zo. The number of municipal wells that are in 

operation each year, and therefore vulnerable to falling water tables, is calculated by the basin population (POPt) 

divided by the median population served by each well (popwell). Similarly, the number of irrigation wells are 

calculated by the current irrigation pumping rate (Qagt) divided by the median annual pumped volume of an 

irrigation well in 2016 (qwell) (Table 3). 
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Figure 3. Modeling increasing As and F concentrations as a function of 

both well depth (z) and depth to water table (Ht). The black line represents 

the concentration of a geogenic contaminant i that increases linearly with 

depth within the aquifer. Concentration at the water table and bottom of a 

fully perforated well is equal to Ci,z(Ht) and Ci,z(z), respectively. The 

average of these is Ci,well(Ht,z) (Equation 11 in Table 2) is the mixed 

concentration of contaminant i in the aquifer from the water table (Ht) to 

the well bottom (z). 

2.3.4. Crop Mass Produced and Revenue Generated per Volume of 

Water 

If only irrigated crops are considered across the basin (excluding crops that 

were watered only with rainfall), approximately 1.0 × 10 9 m 3 of water was 

used for growing crops in 2020 (Table S1 in Supporting Information S1). 

This volume was calculated by multiplying the reported mass of crop grown 

(SIAP, 2020) by the average water footprint for each crop (Equation 10 in 

Table 2; Mekonnen & Hoekstra, 2011). This amount includes rain water, of 

which approximately 3.3 × 10 8 m 3 fell on the reported area of irrigated lands. 

Rainwater, however, would be used less efficiently by crops compared to 

applied irrigation water, owing to the timing of the rainfall events and the 

rainy season (May–August) not coinciding with crop growth periods. The 

water consumed by crops on irrigated lands minus this rainfall amount (6.7 × 

10 8 m 3) approximately matches the independently reported permitted 

irrigation pumping across the basin of 4.63 × 10 8 m 3 (Table 3) (CONAGUA, 

2020e). Based on their average water footprints (Mekonnen & Hoekstra, 

2011, 2013), reported crop mass grown (SIAP, 2020), and Equation 10 in 

Table 2, the eight crops that consumed the most water on irrigated lands only 

were Oats (39%), alfalfa (33), corn (12), beans (4), broccoli (4), asparagus 

(2), green chiles (2), and tomatoes (1). 

The revenue generated per water volume consumed to grow a certain crop 

(USD/m 3) is calculated by dividing the crop price (Pcrop) by the average water 

footprint (s). This was highly variable across the eight crops that consumed 

the most water (Table S1 in Supporting Information S1). The largest and 

smallest values per water volumes were green chile (2.01 USD/m 3) and oats 

0.01 USD/m 3, respectively (Figure S8b in Supporting Information S1). The 

volume-weighted average for crops grown on irrigated lands in 2020 was 

only 0.12 USD/m 3. A high value and low-water footprint crop that is likely 

to be representative of the agricultural sector of the future is broccoli. In  

2020, broccoli sold for 448 USD/tonne and requires approximately 296 m 3/tonne of water (Fulton et al., 2019; 

Mekonnen & Hoekstra, 2011). Thus, the revenue generated from the sale of broccoli per water volume is 1.51 

USD/m 3. 

Agricultural production should respond to changing prices and costs. In particular, as the water table falls and 

pumping heights increase, costs rise, which theoretically would put downward pressure on agricultural 

production, even if farmers are shielded from most of these costs through government subsidies. On the other 

hand, increasing populations and standards of living would tend to push agricultural demand up. Since it is 

impossible to know if the downward or upward pressures will prevail, in our scenarios, we assumed that 

agricultural production is a linear function of the amount of water pumped for irrigation, which is the flow that 

is varied exogenously in the simulations. 

2.3.5. As and F Concentrations as Function of Depth to Water Table and Well Depth 

To link water table declines to groundwater quality it is important to constrain the subsurface flow, transport, and 

chemical reaction processes. In this basin, the most likely causes of groundwater quality deterioration is tapping 

older, hotter, and more mineralized groundwater from shallow geothermal heat. The specific geochemical 

reactions are detailed in previous studies from this and other analogous basins (Knappett et al., 2020; Morales-

Arredondo et al., 2018; Rango et al., 2013; Xing et al., 2022). To obtain typical basin-wide future As and F 

concentrations as a function of depth to the water table (Ht), observed concentrations in long-screened wells with 

known depths (n = 106) across the basin were fit to a linear equation of a plane that takes into account the 

volumetric mixing that occurs across the standing water height within continuously screened wells (Equation 11 

in Table 2; Izbicki et al., 2015; Mayo, 2010) (Figure 3). In this model, a linear increase in As and F concentrations 
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at depth (Equation 10 in Table 2) underlies the mixing model. The mixing model calculates the average 

concentration at the depth of the water table and the depth of the bottom of the well (Ht + zo = z). Future well 

depths were calculated using future lift heights (Ht) plus zo. This model makes predictions of both past and future 

As and F concentrations as a function of Ht and z. To test this model, it must not only explain the spatial 

distribution of As and F in 2016 but also the temporal distribution over a period when the water table was observed 

to fall. The successful test against historical As and F concentrations in 1999, when the water table was higher, 

is presented in Supporting Information S1. 

Observed As and F concentrations were fit to Equation 11 in Table 2 within 57 wells across the basin for which 

Ht and z were known (Figures S9 and S10 in Supporting Information S1). This yielded kAs and kF values of 0.0953 

and 0.0072 (mg/L/m), respectively. Using the same approach as for As and F, the vertical geothermal (kTemp) 

gradient underlying the central part of the basin was found to be 2.0 (±0.5)°C/100 m (Figure S11 in Supporting 

Information S1). This is lower than the typical 8°C/100 m geothermal gradient found throughout the Trans-

Mexican Volcanic Belt just south of this basin (Prol-Ledesma & Moran-Zenteno, 2019). 

2.3.6. IQ Suppression as Function of As and F Concentrations in Drinking Water 

This study focusses on the neurotoxic effect of As and F in child cognitive development as an example of one 

health and economic impact from exposure. The thresholds at which negative health effects occur and the shape 

of the dose-response curve for a given neurotoxin are uncertain. A general feature, however, of some well 

constrained dose-response curves of inorganic neurotoxins (i.e., lead (Pb)) is their inverse shapes (Grandjean & 

Landrigan, 2006). In such cases, the steepest IQ reductions occur across the low concentration end of the exposure 

scale (Grosse et al., 2002). 

The neurotoxic effects of As ingestion by children are significant even at low concentrations. But the empirically 

measured dose-response relationship between chronic exposure to As in drinking water or diet and some 

measurement of cognitive performance ranges considerably (Desai et al., 2020; Grandjean & Landrigan, 2006; 

Hamadani et al., 2011; Nahar et al., 2014; Rocha-Amador et al., 2007; Rodriguez-Barranco et al., 2013; Signes-

Pastor et al., 2019; Vahter et al., 2020; Wasserman et al., 2004, 2014, 2016). The reasons for this variability 

include (a) different cultural setting and age of children to whom a given intelligence test was applied (WISC-

III, WISC-IV, Cambridge Neuropsychological Test Automated Battery, and McCarthy Scales of Children's 

Abilities); (b) the chemical form of As ingested; (c) genetic and/or metabolic differences across individuals and 

groups in their ability to detoxify As; (d) whether drinking water or another biological sample (urine, blood, hair, 

or toenails) was taken to assess exposure and the specific biochemical form of As measured (MMA, DMA, and 

total); and (e) other study design factors such as sample size and specific confounding variables included in the 

model (i.e., mother's education, household income, quality of home environment, and co-exposure to lead or 

manganese). In spite of these differences, all studies conclude that As exposure, even at levels near the WHO 

guideline, have a clear negative impact on child IQ. Longitudinal studies suggest that the effect is irreversible 

(Vahter et al., 2020; Wasserman et al., 2016). 

The observed threshold of a neurotoxic effect from As exposure ranges across studies. This threshold can be 

estimated by studies that regressed a measure of cognitive performance on quintiles of As exposure levels. For 

example, in a cross-sectional study with 272 9–10 year old school children in Maine, USA, children drinking 

private well water with As concentrations exceeding 5 μg/L had approximately 6.1 lower IQ points than children 

drinking less than this amount (Wasserman et al., 2014) (dashed line, Figure 4a). In a longitudinal study with 

1,523 10 year old children in MATLAB, Bangladesh, a large decrease (7.2) in the Full Development Score in the 

WISC-IV test (modified for 10 year old Bangladeshi children) was observed when total urinary As concentrations 

exceeded approximately 30 μg/L (Vahter et al., 2020). The difference in the thresholds may be partly owed to 

the exposure levels being much lower in the Maine study than those in the Bangladesh study; however, the 

magnitude of the effects are similar in both cases. 

Other studies had the statistical power to constrain a continuous dose-response relationship where As 

concentrations in water or urine are loge-transformed and regressed upon IQ or raw scale point decrements 

(Equation 13 in Table 2) while controlling for confounding variables. A cross-sectional study with 201 10-year-

old children in Araihazar, Bangladesh, found that the regression coefficient, βAs, was approximately −1.65 when 

loge(As) concentrations in drinking water were regressed upon Full-Scale raw scores (Wasserman et al., 2004). 
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A longitudinal study with 1,700 5 year olds in MATLAB, Bangladesh, observed a βAs of −1.4 only for girls when 

loge(As) concentration in urine were regressed upon Full-Scale IQ scores corrected for age (Hamadani et al., 

2011). In spite of the fact that it only applies to full-scale raw scores, the βAs value of −1.65 was chosen for the 

model to approximate the reduction in IQ points because this model was continuous and regressed on As 

concentrations  

 

Figure 4. Published dose-response curves of IQ reduction owing to exposure to As and F in drinking water. (a) Continuous 

and step style dose-response curves (Wasserman et al., 2004, 2014). (b) Study by Rocha-Amador (2007). Vertical blue and 

red dotted lines represent the WHO and Mexican drinking water limits, respectively. 

in drinking water (solid line, Figure 4a), and the magnitude of the effect is very similar to several high quality 

studies reviewed above. 

A neurotoxic effect of exposure to F in drinking water has been widely reported (Choi et al., 2012). Many of 

these epidemiologic studies, however, did not control for a wide range of potentially confounding variables. 

Nevertheless, a pooled meta-analysis on 27 studies reported a 0.44 standard deviation shift to the left owing to 

“exposure” to high F (Choi et al., 2012). This corresponds to approximately seven IQ points on a normally 

distributed intelligence curve (Choi et al., 2015). The exposed group was typically exposed to F concentrations 

ranging from 1 to 4 mg/L but ranged up to 11 mg/L in several studies. 

To the authors' knowledge, only one study has published a continuous dose-response curve for exposure to F in 

drinking water that controlled for confounding variables. This cross-sectional study with 155 children from 6 to 

10 years old was conducted 100 km north of our study basin in San Luis Potosi (Rocha-Amador et al., 2007). 

Fluoride concentrations in that study spanned a similar range to those in our study basin (<0.5–16 mg/L). The 

current median F concentration in our study area is approximately 1 mg/L (Knappett et al., 2020). Based on the 

reported value of βF of −10.1 (units of loge(mg/L)), no reduction in IQ is predicted based on the current median 

concentration. However, this coefficient suggests that consuming water at the WHO limit of 1.5 mg/L may lower 

IQ by four points (Figure 4b). This large effect is supported by a recently published longitudinal study that was 

performed in Mexico City with 299 mother-child pairs. The authors found that each increase of 1 mg/L increase 

in creatinine-adjusted F concentration in maternal urine over a threshold of 0.8 mg/L during gestation was 

associated with five IQ point reductions in their 6–12 year old children (Bashash et al., 2017). The range of 

maternal, creatinine-adjusted F concentration in urine was 0.23–2.14 mg/L. Thus, although the question of 

whether exposure to F concentrations less than 4 mg/L in drinking water has neurotoxic effects is debated in the 
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literature, a large body of formal peer-reviewed evidence suggests that it can negatively impact cognitive 

development during certain windows of susceptibility (Till & Green, 2021). What is even less understood is how 

geogenic neurotoxins collectively impact cognitive development. In this study, we assume the effects are 

independent and can be simply added. 

2.3.7. Efficacy and Costs of Paying for Drinking Water Quality Mitigation 

2.3.7.1. Self-Supply With Bottled Water 

Although bottled water is not economical compared to piped water solutions and centralized treatment, it is 

nonetheless widely relied upon for drinking and cooking water. Mexico in particular is considered to be the 

bottled water capital of the world (Green, 2018). Past studies on a limited scale in Mexico have found 

unacceptably high concentrations of these dissolved elements in bottled water (Del Razo et al., 2018). A large-

scale study in Italy found widespread low levels of geogenic contaminants in bottled water, which, in a few cases, 

exceeded the WHO standards (Cidu et al., 2011). Therefore, geogenic contaminants that are widely present in a 

region will also likely be found in bottled water and this may contribute to the overall exposure levels. Households 

commonly continue to be exposed to As and F in their tap water even while using bottled water. A governmental 

intervention in central Mexico (San Luis Potosi) to reduce human exposure to F in piped water subsidized the 

costs of bottled water but found that exposure measured in urine samples remained high because people continued 

to prepare their food with tap water (Del Razo et al., 2018). The typical cost to a household of paying for bottled 

water for both drinking and cooking is 634 USD/yr for a household of five people, or 127 USD/person/yr. Over 

the 100 years simulation period, the cost of bottled water was assumed to be constant in 2020 dollars and this 

water was assumed to contain low concentrations of As and F (<1 μg/L and <1 mg/L, respectively). 

2.3.7.2. Centralized Community Water Treatment 

Reverse osmosis (RO) is the most widely used treatment method in Mexico for As and F at the community and 

household scales (Del Razo et al., 2018). More generally, it is also the most widely used technology for removing 

unwanted inorganic ions in water (Boden & Subban, 2018). This widespread use of RO poses a health risk to 

people consuming too little dissolved geogenic elements such as F and lithium (Li), which are necessary for a 

healthy diet (Sedlak, 2019). The micronutrient deficient water can be remineralized with salts after passing 

through the RO system; however, this additional step is typically omitted. The state and federal governments 

have sponsored mitigation on an ad-hoc basis in the past when particularly high concentrations of As and F were 

found in well water, but there is no blanket testing and no uniform concentration threshold above which public 

funds are provided for treatment for As and F across Mexico (Del Razo et al., 2018). We compare the costs and 

benefits to households and taxpayers if centralized treatment is 100% funded by federal and state governments. 

This has been done for chlorination as a treatment method at nearly all drinking water sources since 1991 (Del 

Razo et al., 2018). 

A report from the non-governmental organization Oxfam summarized the current costs of constructing and 

operating small-scale community RO plants in developing countries (Boden & Subban, 2018). The actual costs 

of building and operating an RO plant depend on the costs of parts, expertise, labor, energy, and the method of 

disposal of the brine waters (US EPA, 2019). A full analysis of these are beyond the scope of the present study 

and the costs presented herein are only estimates. For performing RO on low-salinity waters (e.g., groundwater 

in the study basin), approximately 1 kWh/m 3 is needed. An additional 1 kWh/m 3 is required for cleaning and 

distributing the water through the community and disposing of the leftover brine (Boden & Subban, 2018). 

Therefore, 2 kWh/m 3 is implemented in the model for the energy consumption for RO treatment. At the average 

2018 services electricity tariff of 0.13 USD/kWh (SENER, 2018), this corresponds to a cost of 0.26 USD/m 3. 

For mild climates as in Guanajuato, low- and middle-class household water consumption is reported to be 

approximately 100 and 195 L/person/day (CONAGUA, 2007; Cruz et al., 2017). Thus, the average of 147.5 

L/person/ day was implemented. For a community supplied tap water by a typical small-scale RO treatment 

operation, this would translate to 54 m 3/person/yr and 9.7 USD/person/yr for electricity. For community-scale 

RO filters, energy will comprise over 50% of the operating costs (Boden & Subban, 2018). The capital costs of 

installing an RO system that would provide a community with 10 m 3/day range from 4,000 to 8,000 USD. This 
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would supply 68 people with drinking water. We assumed the mid-range capital cost (6,000 USD) and amortized 

this cost over 10 years, which translates to an additional cost of 8.85 USD/person/yr. Therefore, the total cost per 

person for a community RO system, excluding the cost of labor, was assumed to be approximately 18.55 

USD/person/ yr. Although it is only an estimate, this is a fraction of the cost of bottled water, which only supplies 

water for drinking and cooking, not for all household needs as centralized treatment provides. Furthermore, the 

cost of centralized treatment options, such as RO, are likely to continue to decrease in the future. 

2.4. Model Implementation 

All governing equations are expressed in their analytical or finite forms (Table 2). The system of equations was 

solved in MATLAB (version R2019a). The simulation was run at 1 year timesteps for a period of 100 years. 

Initial conditions and model parameters were classified as either initial, fixed, or fitted (Table 3). The fitted 

parameters included average coefficients from dose-response studies for human exposure to As and F 

concentrations and rates of increase in As and F concentrations with well depth (Section 3.2). Key outputs of the 

simulation were change in lift heights, energy consumption and cost, As and F concentrations over time, mean 

childhood IQ reductions, and the impacts of these IQ reductions on mean personal earnings. Driving the forward 

model are the three different future pumping rate scenarios that were previously described and are detailed in 

Table 1. 

3. Results and Discussion 

3.1. Long-Term Water Level Declines and Energy Demand for Irrigation 

Pumping rates in year one (2020) were set as the summed volume of concessions for registered wells 

(CONAGUA, 2020e). After that, the three pumping rate change scenarios were implemented (Figure 5a). Under 

S1, the lift height would reach 426 m in 2120 (Figure 5b), and total annual energy demanded for irrigation 

pumping would reach 3,918 GWh (Figure 5d). Given that 1,737 kWh powers a Mexican home for 1 year 

(Oropeza-Perez & Petzold-Rodriguez, 2018), this is equivalent to 2.56 million homes. In contrast, energy 

demanded for irrigation pumping would reach 481 and 72 GWh for the static (S2) and decreasing (S3) pumping 

rate scenarios, respectively. 

3.2. Childhood IQ and Income for Population Living in the Basin 

Irrigation pumping will continue to force communities to install deeper wells in the coming decades. A 2% 

reduction in lifetime earnings per IQ point decrement was determined (Attina & Trasande, 2013; Grosse et al., 

2002). Expected median well As and F concentrations were calculated for the three pumping scenarios (Figures 

5f and 5g) (Equation 12 in Table 2). Equation 12 in Table 2 predicts that median As and F concentrations will 

increase to 45 μg/L and 3.4 mg/L, respectively, by 2120 under S1. The reviewed epidemiological dose-response 

studies (Hamadani et al., 2011; Wasserman et al., 2004, 2014) suggest that children consuming the present-day 

median As concentration of 14 μg/L (over half the basin's population) will experience four IQ point reductions 

(Figure 5h). Under S1, IQ point decrements owing to As exposure are expected to increase to 6 by 2120 but the 

pumping scenarios do not have a strong impact on IQ point decrements from As owing to the flattening of the 

dose-response curve beyond current exposure levels (Figure 4a). 

At current median F concentrations of 1 mg/L, only slight reductions in IQs are predicted (Figure 4b). By 2120, 

however, a wide range of IQ decrements from 4 to 12 points owing to childhood exposure to F concentrations 

are predicted (Figure 5g). This is caused by the steep dose-response curve (Figure 4b). We summed the separate 

predicted IQ decrements owing to exposure to As and F. Under S1, the population would be suffering a 19 point 

IQ decrement by 2120 (Figure 5j). The two lower pumping rate scenarios S2 and S3 would keep the population's 

IQ suppressed at approximately 12 and 9 points, respectively. 

By the year 2120, owing to their reduced IQs, people living in the basin and drinking water from wells untreated 

under S1, S2, and S3 are expected to have median incomes of 2,609, 3,211, and 3,464 USD, respectively (Figure 

5k). If, however, exposure was mitigated at no cost to the consumers, expected median incomes by 2120 rise to 

4,174 USD (RO treatment in Figure 5k). 
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3.3. Economic Impacts of Pumping and Treatment Scenarios 

The NPV of the increasing and decreasing pumping rate scenarios without and with drinking water quality 

mitigation was calculated relative to the NPV of the base case of constant pumping (S2) with no mitigation and 

assuming a 3% discount rate (Table 4). All calculations were performed assuming 1%, 3% and, 5% discount rates 

and the results are presented in Tables S2–S5 in Supporting Information S1 in 2020 dollars. The results in Table 

4  are reported for the average crop value to water volume ratio (0.12 USD/m 3) (weighted by irrigated water 

volume) (Table S1 in Supporting Information S1). These parameters are highly influential on the NPV results  

 

Figure 5. Impacts of future pumping rates on lift heights, energy demand, water quality, population IQ, and personal incomes. (a) Pumping rates for irrigation pumping 

scenarios and domestic pumping assuming a 1% population growth rate. (b) Expected lift heights. (c) Energy intensity required for lifting water to the surface. (d) 
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Energy demand for lifting irrigation water. (e) Energy demand for lifting domestic water (solid lines), and treating it using RO (dashed lines). (f) Expected median As 

and (g) F concentrations in wells water. (h) Individual impacts of As, (i) F, and (j) their combined impacts on the population IQ. (k) Expected growth in median 

personal income owing to IQ reduction or mitigation option chosen. (l) Growth or reduction in agriculture revenue. Simulation time-period is 100 years (2020–2120). 

owing to the two order of magnitude variability of crop value to water ratio amongst crop types (Table S1 in 

Supporting Information S1, Table 3). The impacts of this variability and uncertainty on the reported NPV results 

were assessed in a sensitivity analysis (Section 3.4). 

Table 4  
Difference in Net Present Value (NPV) Analysis for Growing the Same Proportion of Crop Types Grown in 2020 Over 

Modeling Period (2020–2120) Assuming a 3% Discount Rate 
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Note. The 2020 volume-weighted average revenue/water volume ratio was 0.12 (USD/m 3) (Table S1 in Supporting 

Information S1). The differences in agriculture revenue, irrigation cost, domestic pumping cost, personal income, and 

drinking water mitigation costs are all calculated relative to the base case. All amounts are in units of 10 9 USD in 2020. Hot 

and cool colors in the NPV boxes refer to less and greater value, respectively. 

3.3.1. Economic Impacts of Varying Pumping Rates With No Drinking Water Quality Mitigation In the 

first column of Table 4, we compare the constant-pumping scenario (S2) with alternatives in which pumping 

increases gradually (S1) and decreases gradually (S3). Assuming farmers grew a portfolio of crops over the 100 

years modeling period with a similar revenue per volume of irrigation water (0.12 USD/m 3), the NPV generated 

from the sale of crops increases by 1.44 × 10 9 USD under the increasing pumping scenario (S1). This increase 

in revenue, however, is more than offset by a 2.92 × 10 9 USD increase in irrigation pumping costs and a 3.63 × 

10 9 USD reduction in household earnings owing to the additional exposure to As and F concentrations amongst 

the other more minor increases in expenses of additional domestic pumping (0.18 × 10 9 USD) and new well 

installation costs (0.65 × 10 9 USD). Hence, compared to S2, the relative NPV for S1 with no drinking water 

mitigation is −5.96 × 10 9 USD. 

If the irrigation pumping rate is slowly reduced over the next 100 years (S3), agricultural revenues are estimated 

to fall by 0.38 × 10 9 USD compared to those of S2. This amount of lost revenue is smaller, however, than the 

0.52 × 10 9 USD decrease in irrigation pumping costs and the 1.27 × 10 9 USD increase in household earnings 

owing to the relatively lower exposure to As and F compared to that of S2. Hence, relative NPV for S3 is 1.51 × 

10 9 USD. 

3.3.2. Economic Impacts of Drinking Water Quality Mitigation 

In the remaining columns of Table 4, we explore the relative economic impacts if bottled water or community-

scale RO treatment is used to reduce exposure to As and F to negligible levels. Relative to the base case S2, in 

which we assume no mitigation of the As and F exposure levels, water treatment yields 11.67 × 10 9 USD greater 

personal incomes. After subtracting the costs of bottled water and community-scaled RO treatment, the relative 

NPVs  

Table 5  
Difference in Net Present Value (NPV) Analysis for Growing Broccoli Over the Modeling Period (2020–2120) Assuming a 

3% Discount Rate 
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Note. Broccoli has a Revenue/Water Volume Ratio of 1.5 (USD/m 3) (Table S1 in Supporting Information S1). The 

differences in agriculture revenue, irrigation cost, domestic pumping cost, personal income, and drinking water mitigation 

costs are all calculated relative to the base case. All amounts are in units of 109 USD in 2020. Hot and cool colors in the 

NPV boxes refer to less and greater value, respectively. 

of these mitigations, while holding pumping constant, is 7.57 × 10 9 and 11.55 × 10 9 USD, respectively. This 

massive gain in value is predicted because such drastic lowering of exposures to negligible levels of As and F 

capitalizes on the large gains in IQ that occur at the low end of the dose-response curve. 

If pumping increases over the next 100 years (S1) while implementing private bottled water, this results in a 5.25 

× 10 9 USD greater NPV compared to that of S2 with no treatment. If community-scale RO treatment is utilized, 

this increases the difference in NPV to 8.77 × 10 9 USD. The scenarios with the greatest relative NPV are those 

in which pumping is reduced (S3) and private bottled water (7.82 × 10 9 USD) or community-scale RO treatment 

(11.38 × 10 9 USD) is used. This business-as-usual example illustrates that when a low value to water footprint 

crop is used, the magnitude of the gain in NPV from implementing drinking water treatment greatly exceeds that 

from increasing or reducing pumping. 

3.3.3. Sensitivity of NPV to Variability in Crop Value 

The low amount of revenue generated per volume of water by the 2020 portfolio of irrigated crops is the reason 

why the relative costs exceeded the benefits when irrigation pumping was increased relative to the base case. If, 

however, the water footprint and 2020 price for broccoli is assumed, with a revenue to water volume ratio of 1.5 

(USD/m 3), a large, positive relative NPV of 11.11 × 10 9 USD is calculated by increasing pumping (Table 5). 

The large, positive relative NPV from mitigating drinking water combines with the value added by increasing 

irrigation pumping to grow a high value, low water footprint crop. This results in a 25.83 × 10 9 USD relative 

NPV for community-scale mitigation with RO. In contrast, the relative NPV for the reduced pumping scenario 

(S3), when added to the benefits from drinking water mitigation using community-scale RO treatment, is still 

large and positive (6.83 × 10 9 USD), but it is smaller than the amount that assumes the lower value to water 

footprint crop (11.38 × 10 9 USD) (Table 4). 

These results demonstrate that there is great opportunity to increase the revenue generated per water volume used 

in irrigation. In order for agriculture to generate enough revenue to offset the increased costs in irrigation and 

personal incomes (S1 vs. S2 in Table 4), a crop value to water footprint of 0.61 USD/m 3 is required. The fifth 

through eighth most produced crops in 2020 (broccoli, asparagus, green chile, and tomatoes) all meet this criteria 

(Table S1 in Supporting Information S1, last column). If high value, low water footprint crops are grown, the 

overall revenue generated increases greatly, sufficient to offset the rising costs of energy to lift water to the 

surface. This is a cautionary note. Although high value crops offer farmers a way to earn higher income per 

volume of water, they create even greater incentives to overexploit the aquifer. Such a rebound effect has a 

precedent with the government-sponsored implementation of drip irrigation in this basin. The farmers were 

encouraged from the savings from energy costs since drip irrigation lowered the water footprint of their crops. 
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This improved the profitability of their operation, so they cultivated more land and ended up using more water 

(Hoogesteger & Wester, 2017). Thus, the intervention program increased revenue and profits for farms but did 

not conserve water. 

An alternative way to view the trade-offs available in this basin is to consider positive outcomes in the disparate 

domains of water quantity and quality, energy, human development, and economic and agricultural productivity 

as parameters to attempt to simultaneously optimize (Figure 6) (Jakeman & Letcher, 2003). The larger area in 

the radar plot indicates more positive outcomes from a given pumping or treatment scenario. More positive 

outcomes trend away from the center of the plot, leading to larger areas. Using this holistic approach, it suggests 

that the worst outcome is increasing pumping with no drinking water treatment (red area in Figure 6a), and the 

best outcome is from reduced pumping with treatment. This is the same conclusion that is drawn from the purely 

economic analysis in the case of the low value to water footprint crop (0.12 USD/m 3) (Table 4), but contrasts 

with the economic findings when a higher value crop is chosen (1.51 USD/m 3) (Table 5). 

3.4. Limitations and Uncertainties of This Study 

In this study, we do not calculate the negative impacts of diseases caused by exposure to As and F in drinking 

water. Although the present-day median concentrations are relatively low, the medians belie the high levels of 

exposure that some communities have been living with, where As and F concentrations range over 100 μg/L and 

5 mg/L, respectively (Knappett et al., 2020). At these levels many serious diseases will result (Argos et al., 2010; 

Ayoob & Gupta, 2006); however, the comprehensive calculation of the health and economic impacts of these 

was beyond the scope of this study. This means that the relative NPV from mitigating exposure to As and F was 

underestimated. Second, it is beyond the scope of this study to model how agricultural revenue benefits the local 

population, but leaving the revenue in the benefits column (Table 4) assumes these revenue broadly benefit the 

local population through employment and wages. This is an overstatement of the value of that revenue to the 

households in this basin, however. Therefore, this study presents a more favorable picture of the net benefits 

(NPV) of overpumping the aquifer by agriculture than is likely to be the case. Third, we do not model how the 

improvement in health, which generally occurs with rising standards of living from economic growth, will help 

to reduce the impacts from exposure to As and F in drinking water. Improving schools, for example, can offset 

some of the IQ decrements suffered by exposure to neurotoxins. 

There was considerable uncertainty or natural variability in 12 input parameters utilized in the model (Table 3). 

These parameters are grouped into hydrological (P, I/P, Ht, zo, Sy), geochemical (kAs, kF), epidemiologic (βAs, βF), 

economic (RIQ), and agricultural (s, Pcrop) categories. These parameters were varied across (a) their entire range, 

in the case of parameters with few estimates; (b) their 95% Confidence Interval (C.I.), in the case of fitted 

parameters; (c) their inter-quartile range, in the case of a large number of possible values; (d) and ±25% of the 

parameter value, in the case of poorly constrained uncertainty or variability. The sensitivity of 15 key output  

parameters to the variability or uncertainty in these 12 input parameters were evaluated (Figure S12 in Supporting 

Information S1). The largest and broadest sensitivity in output parameters were generated from hydrologic 

parameters. This is partly because the hydrology components of the model are upstream of the other components, 

which drives a cascading effect. Human development and economic output parameters were relatively insensitive 

to variation in the As-depth gradient (kAs) and the coefficient of the dose-response curve (βAs) owing to the fact 

that  
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Figure 6. Radar plots showing relative benefits of pumping scenarios without (a) and with (b) drinking water quality mitigation. Benefits are greater in the outward 

direction, whereas costs are greater in the inward direction. The amount represent annual values in the year 2120. Monetary units are not discounted and the crop value 

per water footprint ratio is the volume-weighted average of 2020 (0.12 USD/m 3). 
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present-day median As concentrations are already located on the relatively flat part of the dose-response curve 

(Figure 4a). In contrast, the F-depth gradient (kF) is influential on these output parameters owing to the shape of 

its dose-response curve (Figure 4b). As highlighted already, agriculture revenue is highly sensitive to the large 

range of crop values and crop water footprints. 

3.5. Opportunities for Improvement of Models of the Food-Water-Energy-Health Nexus 

The revenue generated from growing food for export out of the basin dominates over energy costs when a high 

value, low water footprint crop is grown. The actual water footprints for this region are not known, however. 

Although the literature values used herein provide a baseline, metering, remote sensing, or field observations of 

ET could provide more specific values. Cloud cover in this semiarid region is limited, and since metering is either 

absent or not trustworthy, satellite based methods are promising. These can be constrained by reliable 

documentation of plantings and harvests from the Mexican Agri-food and Fishing Information Service (SIAP) as 

well as standard Food and Agriculture Organization methods to calculate the water demand for given crop types 

according to their climate (Allen et al., 1998). From these data, the volume of water embedded in crop production 

could be linked to either the tonnes of crops produced or to the dollar value of that production (Hoekstra et al., 

2011; Hoekstra & Mekonnen, 2012). Preliminary work by our group has established these relationships for 

Mexico at the county scale (Torres Padilla, 2021). Adding such an analysis is important for characterizing the 

impacts of agricultural planting behaviors, as farmers will tend to respond to market prices for foods. If a crop 

type with high water demand is also highly profitable to grow and export, this will increase pumping. Therefore, 

the response of irrigation pumping to global market swings in foods could be explicitly modeled and constrained 

by historical data using the nation-wide crop-rotation database. 

Irrigation efficiency was not explicitly considered in this model, although flood, spigot, and drip irrigation 

technologies are all widely deployed across the basin. The state and federal governments have subsidized a shift 

toward drip irrigation, but this was met with mixed success as mentioned. Therefore, a future model could also 

explore how crop profitability, as a function of market prices and irrigation technique, leads to greater or less 

irrigation pumping. 

This study highlights the vast human potential in earnings that could be unleashed by reducing exposure to As 

and F concentrations in the drinking water. The NPV of this rivals the value of switching to growing high value, 

low water footprint crops (Table 5). 

4. Conclusions 

Polluting industries that impose costs on populations living near them is nothing new. Our study is novel because 

we link the activity of overexploiting an aquifer, which is seen as a water supply problem, to human health and 

economic development in the broader population. In a semiarid region, the quantity and quality of groundwater 

is the natural heritage of the population who lives above the aquifer. We quantify the diminishing value of that 

heritage to the local population over time by calculating how much it will cost to access and treat (or not treat) 

this water that is now contaminated. 

This study does not ignore the benefits from agriculture. Rather, the model overstates the benefit of irrigation 

pumping and agricultural production to the residents in the basin, since much of the benefits of farming go to 

owners, shareholders, and consumers who do not live in the basin. Even after including the benefits of pumping 

more groundwater for irrigation, the rising electricity costs and worsening As and F concentrations means that 

pumping at higher rates than today will reduce the NPV of the basin's agricultural industry and the incomes of 

the people who live there. This could be addressed by growing higher value, lower water footprint crops (through 

either crop type or through improved irrigation efficiency), but even in the highest revenue-generating scenarios 

where only one of the highest value, lowest water footprint crops are assumed to be grown across the basin 

(broccoli), the benefit of reducing human exposure to As and F is roughly equal to the entire revenue generated 

by the agriculture industry in this basin. 
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Removing environmental exposures to neurotoxins (not to mention carcinogens) is an achievable step in 

developing a nation's human resources. Doing this weakens positive feedback loops that drive intergenerational 

poverty.  
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