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Recent ambient temperature and fine particulate matter (PM2.5) exposure is 
associated with urinary kidney injury biomarkers in children 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Short-term PM2.5 exposure was associ-
ated with higher eGFR, and increased 
urinary A1M and cystatin C. 

• Ambient temperature seven days prior 
to date of visit was associated with 
decreased urinary cystatin C and 
osteopontin. 

• Short-term ambient temperature and 
PM2.5 exposure may lead to subclinical 
glomerular or tubular injury.  
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A B S T R A C T   

Background: Limited research has examined associations between exposure to ambient temperature, air pollution, 
and kidney function or injury during the preadolescent period. We examined associations between exposure to 
ambient temperature and particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) with preadolescent 
estimated glomerular filtration rate (eGFR) and urinary kidney injury biomarkers. 
Methods: Participants included 437 children without cardiovascular or kidney disease enrolled in the Program-
ming Research in Obesity, Growth, Environment and Social Stressors birth cohort study in Mexico City. eGFR and 
urinary kidney injury biomarkers were assessed at 8–12 years. Validated satellite-based spatio-temporal models 
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Kidney injury biomarkers 
Distributed lag models 

were used to estimate mean daily temperature and PM2.5 levels at each participant's residence 7- and 30-days 
prior to the date of visit. Linear regression and distributed lag nonlinear models (DLNM) were used to 
examine associations between daily mean temperature and PM2.5 exposure and kidney outcomes, adjusted for 
covariates. 
Results: In single linear regressions, higher seven-day average PM2.5 was associated with higher urinary alpha-1- 
microglobulin and eGFR. In DLNM analyses, higher temperature exposure in the seven days prior to date of visit 
was associated with a decrease in urinary cystatin C of − 0.56 ng/mL (95 % confidence interval (CI): − 1.08, 
− 0.04) and in osteopontin of − 0.08 ng/mL (95 % CI: − 0.15, − 0.001). PM2.5 exposure over the seven days prior 
to date of visit was associated with an increase in eGFR of 1.77 mL/min/1.73m2 (95 % CI: 0.55, 2.99) and 
urinary cystatin C of 0.19 ng/mL (95 % CI: 0.03, 0.35). 
Conclusions: Recent exposure to ambient temperature and PM2.5 were associated with increased and decreased 
urinary kidney injury biomarkers that may reflect subclinical glomerular or tubular injury in children. Further 
research is required to assess environmental exposures and worsening subclinical kidney injury across 
development.   

1. Introduction 

Globally, the prevalence of chronic kidney disease (CKD) is esti-
mated to be 11 %–15 % (Hill et al., 2016; Lv and Zhang, 2019). Many 
comorbidities, such as obesity, hypertension, and diabetes, are risk 
factors for CKD and end-stage renal disease (Chang et al., 2021; 
Kazancioğlu, 2013). Although these risk factors play a role in the 
increasing prevalence of CKD, research suggests that warming global 
temperatures and concomitant exposure to environmental pollutants 
contributes to disease burden. Similarly, ambient temperature has been 
associated with increased risk of cardiovascular diseases (Bhatnagar, 
2017), and occupational data from agricultural workers in Central 
America, Sri Lanka, and the United States have linked heat exposure to 
higher incidence and prevalence of acute kidney disease and CKD or 
CKD of unknown origin (CKDu) in these populations (Correa-Rotter 
et al., 2014; Jayasekara et al., 2019; Moyce et al., 2017). While studies 
have reported associations between environmental exposures and kid-
ney disease, particularly in older adults, there is limited research 
examining these associations earlier in life (e.g., childhood, 
adolescence). 

Research examining the environmental effects of ambient tempera-
ture on kidney disease often uses hospital admissions data, when in-
dividuals may have pre-existing or progressed kidney disease, which 
may be worsened by extreme temperatures. Potential heat-related kid-
ney disease is hypothesized to be caused by dysregulated body tem-
perature, water loss through sweating, and subsequent dehydration, 
with rising ambient temperatures (Ó Flatharta et al., 2019). Among 
children, the incidences of kidney disease and electrolyte imbalance 
increase significantly during heat waves (Xu et al., 2012). Further, 
higher exposure to air pollution has been linked to increased blood 
pressure in both adults (Yang et al., 2018) and children (Huang et al., 
2021), and has been associated with higher incidence of hypertension 
and CKD later in life (Bo et al., 2019; Sanders et al., 2018). A recent 
meta-analysis reported that both short- and long-term exposure to 
ambient air pollutants were associated with increased systolic and dia-
stolic blood pressure among children and adolescents (Huang et al., 
2021). We previously reported that exposure to in utero particulate 
matter ≤ 2.5 μm in diameter (PM2.5) was associated with higher esti-
mated glomerular filtration rate (eGFR) and blood pressure in pre-
adolescents in Mexico City (Rosa et al., 2020; Rosa et al., 2022), an area 
with mild ambient temperature, elevated PM2.5, and higher incidence of 
kidney disease (GBD Chronic Kidney Disease Collaboration, 2020; 
Gutiérrez-Avila et al., 2022). 

To improve upon prior cross-sectional studies of temperature and 
kidney outcomes, we aimed to assess associations of short-term ambient 
temperature and PM2.5 exposure on eGFR and kidney injury biomarkers 
in healthy preadolescent children in Mexico City. Since serum creatinine 
and eGFR have limitations for diagnosing pre-clinical CKD and may not 
be an ideal early indicator of disease, we assessed soluble kidney injury 
biomarkers in urine which may provide a more sensitive indication of 

kidney damage (Zsom et al., 2022). 

2. Methods 

2.1. Study design and population 

We used data from the Programming Research in Obesity, Growth, 
Environment and Social Stressors (PROGRESS) study, which is a longi-
tudinal cohort study based in Mexico City, Mexico. Briefly, women who 
were in their second trimester of pregnancy were recruited into the 
study through the Mexican Social Security Institute (Instituto Mexicano 
del Seguro Social) between July 2007 and February 2011. Eligibility of 
the participants included at least 18 years of age, <20 weeks' gestation, 
no medical history of kidney or heart disease, no daily alcohol con-
sumption, and no use of anti-epilepsy drugs or steroids. A total of 948 
women delivered a live child into the cohort, and 571 children attended 
the 8–12 year visit. In this analyses, we excluded children with missing 
data on exposure assessment and covariate data. We excluded partici-
pants with missing ambient temperature and PM2.5 values (n = 63), 
gestational age <37 weeks and >42 weeks (n = 57), missing BMI (n =
2), and missing indoor smoke exposure during the 8–12 year visit (n =
12). Our final study population consisted of 437 Mexican children aged 
8 to 12 years. These children were free of kidney or cardiovascular 
disease, assessed through maternal questionnaire as of the 8–12 year 
study visit. Written informed consent from the children's mothers and 
children's assent were obtained prior to the collection of samples and all 
data collection methods were completed in accordance with the 
appropriate guidelines and regulations. PROGRESS study protocols were 
approved by the institutional review boards of the Icahn School of 
Medicine at Mount Sinai, Brigham and Women's Hospital, and the 
Mexican National Institute of Public Health. 

2.2. Ambient temperature and PM2.5 measurements 

Daily predictions of ambient temperature and PM2.5 with 1 × 1 km 
spatial resolution came from the novel satellite-based models developed 
for the Mexico City Metropolitan Area and were used to estimate ex-
posures at each participant's residence. Briefly, both models utilized a 
combination of data from NASA satellites Terra and Aqua [Land Surface 
Temperature (LST) to predict ambient air temperature, and aerosol 
optical depth to predict PM2.5], and other spatiotemporal predictors of 
ambient temperature and PM2.5 including meteorology and land use 
information among others. Our temperature models leveraged satellite- 
hybrid mixed-effects modeling, regressing air temperature measure-
ments from ground monitoring stations against land use terms, day- 
specific random intercepts, and fixed and random LST slopes. We 
assessed model performance using 10-fold cross-validation at withheld 
stations. The root-mean-square error ranged from 0.92 to 1.92K and the 
R2 ranged from 0.78 to 0.95. The daily mean PM2.5 model used Extreme 
Gradient Boosting with inverse-distance weighted surfaces and 
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spatiotemporal predictors, and it was evaluated using leave-one-station- 
out cross-validation, and the model exhibited good performance, with 
an overall cross-validated mean absolute error (MAE) of 3.68 μg/m3, 
and R2 ranging from 0.64 to 0.86. Detailed methods employed in the 
satellite-based models were published in prior studies (Gutiérrez-Avila 
et al., 2021; Just et al., 2015). 

Exposure estimates of ambient temperature and PM2.5 were assigned 
to study participants based on their geocoded home addresses using the 
corresponding ambient temperature and PM2.5 1 × 1 km grid cells from 
our satellite-based models. 

2.3. Child urinary creatinine, specific gravity, and protein biomarker 
measurements 

At the 8–12 year visit, spot urine samples were collected from the 
children and stored at − 80 ◦C until shipment to the Icahn School of 
Medicine at Mount Sinai for subsequent analysis. The Arbor Assay's 
Urine Creatinine Detection Kit was used to quantify urine creatinine. 
Samples were analyzed on a SpectraMax Plus 385 plate reader (Molec-
ular Devices, California), diluted at a 1:100 dilution with water and 
pipetted into a 96-microwell plate with creatinine reagent. Urine spe-
cific gravity was measured using a Rudolph J157HA+ Automatic 
Refractometer (Rudolph Research, New Jersey). 

Urinary protein concentrations were determined for nine proteins, 
grouped by primarily glomerular or tubular segment-specific proteins, 
based on their sites of expression and the pathophysiologic mechanisms 
that correspond to clinical acute kidney injury (Gunasekara et al., 2020; 
Murray et al., 2014). Glomerular proteins included albumin and cystatin 
C, tubular proteins included kidney injury molecule-1 (KIM-1), neutro-
phil gelatinase associated lipocalin (NGAL), alpha-1-microglobulin 
(A1M), beta-2-microglobulin (B2M), retinol-binding protein 4 (RBP4), 
osteopontin (OPN), uromodulin and glutathione S-transferase alpha 
(GSTα). Protein concentrations have been previously described (Politis 
et al., 2022). Briefly, protein concentrations were assayed using the 
Luminex-multiplex system at the Mount Sinai Human Immune Moni-
toring Core. Absolute quantification levels, based on linear internal 
standard curves, were obtained from the mean fluorescence intensity 
(MFI) values measured for each analyte. The subsequent analyses used 
the absolute quantification values after normalization for each protein. 
Protein concentrations that were below the lower limit of detection 
(LLOD) were replaced with the value of the LLOD divided by the square 
root of two. Protein concentrations higher than the quantifiable range 
were excluded from analyses. This included albumin (n = 3), NGAL (n =
1), OPN (n = 1), and B2M (n = 1). Nearly 33 % (n = 144) of uromodulin 
MFI values were higher than the quantifiable range, thus we performed 
exploratory analyses using uromodulin MFI values without imputation. 

2.4. Serum cystatin C and eGFR 

Fasting blood samples were collected at the study visit by a trained 
phlebotomist and serum was separated. Serum samples were stored at 
− 80 ◦C until subsequent analysis. Measurements of serum cystatin C 
were obtained using the Quantikine® human cystatin C immunoassay 
(R&D Systems, Minneapolis, MN, USA). The serum cystatin C mea-
surements were then used to derive the eGFR values using the following 
formula: eGFR = 70.69 × (serum cystatin C)− 0.931, where serum cystatin 
C is in mg/L (Ng et al., 2018). 

2.5. Covariates 

Demographic information, including child age, sex, body mass index 
(BMI), maternal report of indoor smoke exposure at the time of visit, and 
socioeconomic status (SES) during pregnancy was collected from the 
participants. SES was assessed utilizing 13 variables derived from pre-
natal questionnaire results which were used to classify study participant 
families into six levels based on the SES index created by the Asociación 

Mexicana de Agencias de Investigación de Mercados y Opinión Pública 
(AMAI) (Carrasco, 2002). These levels were then collapsed into lower, 
medium, and higher SES. Prenatal SES was used because it was reported 
for majority participants and it did not change over time for participants 
at the time of visit. Children's BMI was measured at the same time as the 
collection of urine for the kidney injury biomarkers and the estimation 
of the BMI z-scores were based on the World Health Organization 
guidelines for children (WHO Multicentre Growth Reference Study 
Group, 2006). BMI was categorized into 3 levels: normal weight (BMI z- 
score ≤ 1), overweight (1 < BMI z-score ≤ 2), and obese (BMI z-score >
2). Indoor smoke exposure at the time of visit reports of any smoker in 
the home. Season of date of visit was used to account for seasonality and 
defined according to weather patterns in Mexico City as dry cold 
(January–February; November–December), dry warm (March–April), 
and rainy (May–October). 

2.6. Statistical analysis 

The kidney outcomes of interest in our study included eGFR and nine 
urinary kidney injury biomarkers. All protein concentrations were log2 
transformed. We first conducted linear regression models using seven- 
day mean temperature averages and seven-day mean PM2.5 averages 
in separate models. The seven-day exposure prior to kidney assessment 
was selected because PM2.5 and ambient temperature can affect the 
kidneys within days to weeks time (Johnson et al., 2019); a secondary 
analysis examined exposure over a period of 30 days. Covariates in 
adjusted models included child age, child sex, child BMI, SES, season of 
visit and child urine specific gravity to account for urinary dilution. 
Models for temperature were also adjusted for smoking inside at the 
time of visit. To estimate the time-varying association between esti-
mated daily mean temperature and PM2.5 levels and each kidney 
parameter, we fitted distributed lag nonlinear models (DLNMs). Models 
included both cross-basis for temperature and PM2.5 for an exposure 
period starting 7 days prior to the date of visit and ending on the date of 
visit. The DLNMs utilized a generalized additive model that used linear 
terms to examine the association between exposure and outcome, and a 
penalized spline basis was used to model the lag structure, with penalties 
for overall smoothness. In sensitivity analyses, we additionally exam-
ined the association between temperature and PM2.5 and the kidney 
injury biomarkers for an exposure period starting 30 days prior to the 
date of visit and ending on the date of visit. We also examined associ-
ations between 7-day measures of temperature and PM2.5 using the 
concentrations of uromodulin and excluding values above the quantifi-
able range. For all analyses we considered an alpha level of 0.05 for 
statistical significance. DLNMs analyses were ran using dlnm package 
version 2.4.5 (Gasparrini et al., 2010) in R Version 4.0.3 (R Development 
Core Team) and all other analyses were conducted using SAS v9.4 (SAS 
Corporation, Cary, NC). 

3. Results 

3.1. Characteristics of the study participants 

The study population's sociodemographic characteristics and expo-
sure measurements are displayed in Table 1. The average age of our 
study population was 9.6 years, and males and females were evenly 
distributed. The majority of children were lower SES (52 %). Over half of 
the children (55 %) were normal weight, 24 % and 21 % were over-
weight or obese, respectively. About 10 % of the children had exposure 
to indoor tobacco smoke at the time of visit. The majority of participants' 
(66 %) study visit occurred during the rainy season, with 25 % occuring 
during the cold dry season and 9 % during the warm dry season. Four 
participants had an eGFR <60 mL/min/1.732, which is the level asso-
ciated with adult CKD (Levin et al., 2013). The average seven-day 
temperature was 16.2 ◦C and ranged 10.8–21.8 ◦C. The average seven- 
day PM2.5 was 18.7 μg/m3 and ranged 7.5–55.7 μg/m3. Among each 
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season, the average seven-day temperature was 16.7 ◦C for the rainy 
season, 14.5 ◦C for the cold-dry season, and 17.7 ◦C for the warm-dry 
season. The kidney injury biomarker concentrations normalized by 
urine creatinine are shown in Supplemental Table 1. 

3.2. Associations of individual exposures with individual kidney injury 
biomarkers 

We assessed the associations between daily mean temperature and 
PM2.5 averaged across 8 days (seven days prior to date of visit plus the 
day of the visit) with each kidney parameter in generalized linear 
models shown in Table 2. In single linear regressions, seven-day average 
PM2.5 μg/m3 was associated with 0.52 mL/min/1.73m3 (95 % confi-
dence interval [CI]: 0.22, 0.83) higher eGFR. Seven-day average PM2.5 
was also associated with a 7 % increase in urinary A1M, and a 7 % 
decrease in uromodulin (MFI) per every 5 μg/m3 increase of in the 
exposure using back-transformed values. We did not find evidence of an 
association between ambient temperature and kidney injury 
biomarkers. 

3.3. Joint temperature and PM2.5 exposure DLNMs 

We assessed the DLNMs of temperature and PM2.5 with eGFR (Fig. 1). 
We did not find evidence of an association between ambient tempera-
ture and eGFR, however, there was an increase in eGFR of 1.77 mL/min/ 
1.73m2 (95 % CI: 0.55, 2.99) associated with PM2.5 exposure between 
day 1 and day 4. We did not observe any associations between tem-
perature and albumin, KIM-1, NGAL, A1M, B2M, RBP4, and GSTα 
(Fig. 2). Higher ambient temperature was associated with a decrease in 
urinary cystatin C of − 0.56 (95 % CI: − 1.08, − 0.04) from day 6 to day 7, 
in OPN of − 0.08 ng/mL (95 % CI: − 0.15, − 0.001) on day 5, and a 
nonlinear relationship with uromodulin [an increase in uromodulin of 

Table 1 
Demographic information and descriptive statistics for PROGRESS subjects (n =
437) in the study.   

N (%) 

Child sex  
Male 221 (50.57) 
Female 216 (49.43) 

Socioeconomic status at pregnancy  
Lower 228 (52.17) 
Medium 164 (37.53) 
Higher 45 (10.30) 

Child body mass index  
Normal 241 (55.15) 
Overweight 104 (23.80) 
Obese 92 (21.05) 

Indoor tobacco smoke exposure at time of visit  
No 394 (90.16) 
Yes 43 (9.84) 

Season at 8–12 year visit  
Cold-dry 107 (24.49) 
Rainy 289 (66.13) 
Warm-dry 41 (9.38)    

Mean (range) 

eGFR (mL/min/1.73 m2) 99.61 (46.76–201.33) 
Serum cystatin C (mg/L) 0.73.73 (0.32–1.56) 
Urinary creatinine (mg/dL) 102 (15.8–322) 
Body mass index z-score 0.86 (− 3.00–3.98) 
Age at urine collection (years) 9.64 (8.08–11.87) 
Average seven-day PM2.5 (μg/m3) 18.79 (7.51–58.29) 
Average 30-day PM2.5 (μg/m3) 18.83 (11.40–37.64) 
Average seven-day temperature (◦C) 16.26 (10.75–21.79) 
Average 30-day temperature (◦C) 16.29 (10.99–21.29) 
Urinary kidney injury biomarkers at 8–12 years of 

age 
Median (25th–75th 
percentile) 

Albumin (mg/dL) 22.71 (12.11–45.23) 
Cystatin C (ng/mL) 11.61 (4.61–21.57) 
KIM-1 (ng/mL) 0.44 (0.20–0.80) 
NGAL (ng/mL) 8.22 (3.36–23.08) 
A1M (ng/mL) 169.63 (106.55–263.62) 
B2M (ng/mL) 205.01 (75.49–455.99) 
RBP4 (ng/mL) 1372.85 (587.50–2682.94) 
OPN (ng/mL) 731.32 (236.23–1399.90) 
Uromodulin (MFI) 3837.98 (2390.00–5592.93) 
GSTα (ng/mL) 0.54 (0.08–4.53) 

eGFR: estimated glomerular filtration rate; NGAL: neutrophil gelatinase- 
associated lipocalin; KIM-1: kidney injury molecule-1; A1M: alpha-1- 
microglobulin; B2M: beta-2-microglobulin; RBP4: retinol-binding protein 4; 
OPN: osteopontin; MFI: mean fluorescence intensity; GSTα: glutathione S- 
transferase alpha. 

Table 2 
Linear regressions of one-week average temperature and PM2.5 with eGFR and 
individual urinary kidney biomarkers assessed at age 8–12 years.   

Temperaturea PM2.5
b 

Beta 95 % confidence 
interval 

Beta 95 % confidence 
interval 

Glomerular 
eGFR (mL/min/ 

1.73 m2)  
− 0.23 − 1.47–1.02  0.52 0.22–0.83 

Albumin (mg/dL)  − 0.07 − 0.15–0.01  0.002 − 0.02–0.02 
Cystatin C (ng/ 

mL)  
− 0.07 − 0.15–0.01  0.02 − 0.004–0.03  

Tubular 
KIM1 (ng/mL)  − 0.03 − 0.10–0.03  0.003 − 0.01–0.02 
NGAL (ng/mL)  0.05 − 0.13–0.24  0.004 − 0.05–0.04 
A1M (ng/mL)  0.00 − 0.05–0.05  0.02 0.004–0.03 
B2M (ng/mL)  − 0.02 − 0.11–0.08  − 0.01 − 0.03–0.01 
RBP4 (ng/mL)  − 0.05 − 0.13–0.03  − 0.01 − 0.03–0.004 
OPN (ng/mL)  − 0.06 − 0.16–0.03  0.02 − 0.01–0.04 
Uromodulin (MFI)  − 0.06 − 0.12–0.01  ¡0.02 ¡0.04 to ¡0.01 
GSTα (ng/mL)  0.03 − 0.15–0.20  0.02 − 0.02–0.06 

KIM-1: kidney injury molecule-1; NGAL: neutrophil gelatinase-associated lip-
ocalin; A1M: alpha-1-microglobulin; B2M: beta-2-microglobulin; RBP4: retinol- 
binding protein 4; OPN: osteopontin; MFI: mean fluorescence intensity; GSTα: 
glutathione S-transferase alpha. Results in bold denote p-value < 0.05. 

a Adjusted for child age, child sex, child body mass index z-score, socioeco-
nomic status, season of visit, specific gravity. 

b Adjusted for child age, child sex, child body mass index z-score, socioeco-
nomic status, season of visit, smoking inside, specific gravity. 

Fig. 1. Association between seven-day average a) daily temperature and b) 
PM2.5 and eGFR assessed at 8–12 years. Models adjusted for child's age, sex, 
BMI z-score and urine specific gravity, socioeconomic status, smoking exposure, 
and seasonality. Dotted lines represent date of visit. 
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Fig. 2. Associations between seven-day average daily temperature and a) albumin, b) cystatin C, c) KIM-1, d) NGAL, e) A1M, f) B2M, g) RBP4, h) OPN, i) uro-
modulin, and j) GSTα at 8–12 years. Models adjusted for child's age, sex, BMI z-score and urine specific gravity, socioeconomic status, smoking exposure, and 
seasonality. Dotted lines represent date of visit. 

Fig. 3. Associations between seven-day average daily PM2.5 and a) albumin, b) cystatin C, c) KIM-1, d) NGAL, e) A1M, f) B2M, g) RBP4, h) OPN, i) uromodulin, and j) 
GSTα at 8–12 years. Models adjusted for child's age, sex, BMI z-score and urine specific gravity, socioeconomic status, smoking exposure, and seasonality. Dotted lines 
represent date of visit. 
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0.30 MFI (95 % CI: 0.07, 0.53) on day 5 but a decrease of − 0.56 (95 % 
CI: − 0.93, − 0.19) on day 7] (Fig. 2). Among the DLNMs with PM2.5 
(Fig. 3), we observed specific associations with kidney injury biomarkers 
including albumin, cystatin C, KIM-1, A1M, OPN, uromodulin, and 
GSTα. PM2.5 exposure was associated with an increase in albumin of 
0.03 ng/mL (95 % CI: 0.0001, 0.06) on day 7, an increase in cystatin C of 
0.19 ng/mL (95 % CI: 0.03, 0.35) from day 4 to 7, an increase in KIM-1 of 
0.03 ng/mL (95 % CI: 0.001, 0.06) on day 5, an increase in A1M of 0.09 
ng/mL (95 % CI: 0.02, 0.16) from day 5 to 7, an increase in OPN of 0.19 
ng/mL (95 % CI: 0.03, 0.34) from day 5 to 8, a decrease in uromodulin of 
− 0.03 MFI (95 % CI: − 0.05, − 0.004) from day 3 to 4, and an increase in 
GSTα of 0.03 ng/mL (95 % CI: 0.001, 0.06) on day 5. In sensitivity an-
alyses, we reran our uromodulin analysis using the quantified concen-
trations and we see similar results to those reported with MFI values in 
linear regression and DLNM models (see Supplemental Table 2 and 
Supplemental Fig. 1). We note that when these values are excluded, the 
sample size is reduced by 1/3 and we observe similar findings with 
wider confidence intervals. 

3.4. 30-day sensitivity analyses 

Results of 30-day daily mean averages of temperature and PM2.5 
linear regression associations with kidney injury biomarkers is shown in 
Supplementary Table 3. In single linear regressions, 30-day average 
temperature was associated with lower urinary albumin (β: − 0.13), 
cystatin C (β: − 0.14), OPN (β: − 0.12), and uromodulin (β: − 0.08). 
Thirty-day average PM2.5 was associated with higher eGFR (β: 0.51), 
cystatin C (β: 0.03), A1M (β: 0.03), and GSTα (β: 0.06), and associated 
with lower uromodulin (β: − 0.14). 

Among the 30-day lags in DLNMs, we observed a decrease in eGFR of 
− 4.38 mL/min/1.73 m2 (95 % CI: − 8.06, − 0.70) associated with tem-
perature exposure between day 14 and day 23, and an increase in eGFR 
of 4.67 mL/min/1.73 m2 (95 % CI: 2.49, 6.84) associated with PM2.5 
exposure from the date of visit to day 16 (Supplementary Fig. 2). Among 
the 30-day average daily temperature DLNMs, we observed specific as-
sociations with kidney injury biomarkers including albumin, cystatin C, 
KIM-1, A1M, OPN, uromodulin, and GSTα (Supplementary Fig. 3). 
Higher temperature in the 7 days prior to date of visit was associated 
with an increase in KIM-1 of 0.40 ng/mL (95 % CI: 0.05, 0.74) and in the 
first 15 days a decrease of − 0.88 ng/mL (95 % CI: − 1.36, − 0.40). 
Temperature exposure was associated with a decrease in albumin of 
− 0.75 ng/mL (95 % CI: − 1.36, − 0.14) from day 14 to day 30, in cystatin 
C of − 1.24 ng/mL (95 % CI: − 1.88, − 0.59) from day 15 to day 30, in 
A1M of − 0.41 ng/mL (95 % CI: − 0.76, − 0.06) from day 24 to day 30, in 
OPN of − 1.02 ng/mL (95 % CI: − 1.72, − 0.32) from day 23 to day 31, in 
uromodulin of − 0.35 MFI (95 % CI: − 0.69, − 0.03) from day 10 to day 
14, and in GSTα of − 1.41 (95 % CI: − 2.68, − 0.15) from day 17 to day 
30. We did not find evidence of any associations between PM2.5 and 
albumin, KIM-1, NGAL, B2M, RBP4, and OPN (Supplementary Fig. 4). 
PM2.5 exposure was associated with an increase in cystatin C of 0.13 ng/ 
mL (95 % CI: 0.03, 0.22) from day 7 to day 22, in A1M of 0.13 ng/mL 
(95 % CI: 0.03, 0.22) from day 4 to day 19, in GSTα of 0.34 (95 % CI: 
0.05, 0.62) from day 15 to day 30, and a decrease in uromodulin of 
− 0.15 MFI (95 % CI: − 0.25, − 0.05) from the date of visit to day 14 
(Supplementary Fig. 4). 

4. Discussion 

We investigated the associations between ambient temperature and 
PM2.5 exposure with eGFR and urinary kidney injury biomarkers in 
healthy children aged 8–12 years of age. We observed that exposure to 
both short-term (7 days) and longer-term (30 days) PM2.5 was associated 
with higher eGFR closer to the date of visit. Seven-day PM2.5 exposure 
had specific associations with kidney injury biomarkers including cys-
tatin C, A1M, OPN, and uromodulin. We also report that ambient tem-
perature exposure 30 days before the date of visit was associated with 

decreased albumin, cystatin C, KIM-1, A1M, OPN, uromodulin, and 
GSTα. Our findings suggest that ambient temperature and PM2.5 expo-
sure may have implications for kidney health in adolescence. 

Ambient temperature was associated with fluctuations in urinary 
kidney injury biomarkers in healthy children. Some prior research on 
the association of kidney injury biomarkers and ambient temperature 
has been limited to the use of hospital and emergency department ad-
missions data. In a study conducted in Brazil among 2,726,886 hospi-
talizations for renal diseases, the estimated risk of hospitalization over a 
seven-day lag increased by 0.9 % for every 1 ◦C increase in daily mean 
temperature, with the associations being the largest at lag 0 (day of 
hospitalization), but remaining for a lag of 1–2 days (Wen et al., 2022). 
Another study found that the risk of hospitalization for acute renal 
failure increased about 7 % per 10 ◦F (5.56 ◦C) increase in temperature, 
with typical summer temperatures in the state of California (Green et al., 
2010). Increases in ambient temperatures may play a role in the 
development of dehydration and kidney volume loss, which in turn has 
led to increased hospitalizations for renal diseases (Borg et al., 2017). 

Limited studies have examined the associations of kidney biomarker 
levels and ambient temperature. One cross-sectional study conducted in 
the United States among 3377 participants older than 57 years of age 
observed that for every 1 ◦C increase in daily average temperature 
(restricted to temperatures >10 ◦C), NGAL levels increased by 1.89 % 
(95 % CI: 0.77, 3.91) (Honda et al., 2019). In a prior study of agricultural 
workers exposed to extreme temperatures, an increase of urinary NGAL, 
a protein released by damaged nephron tubular cells at the onset of 
inflammation, 200–400 % above baseline was a strong predictor of acute 
kidney injury (Wesseling et al., 2016). Lastly, a study conducted among 
Nicaraguan sugarcane cutters found that levels of NGAL and N-acetyl- 
β-D-glucosaminidase (NAG) were increased near the end of the harvest 
season, a period from March to May (Laws et al., 2016). However, these 
studies were limited to adult and agricultural worker populations who 
are at risk for CKDu. Although our results for NGAL were null for prior 
seven-day and 30-day temperature exposure periods, we observed that 
the association with KIM-1 became more positive closer to the date of 
visit when examining the 30-day lag exposure in temperature, but were 
null when examining the seven-day lag exposure. Both NGAL and KIM-1 
are biomarkers of tubulointerstitial damage, and have been associated 
with heat stress symptoms or heat-related illnesses in population-based 
studies (Goto et al., 2022; Kulasooriya et al., 2021; Kuwabara et al., 
2009; van Timmeren et al., 2007). Here, we also identified that five 
other tubular kidney biomarkers (KIM-1, A1M, OPN, GSTα, and uro-
modulin) were associated with 30-day temperature exposure, which 
may suggest that increasing ambient temperature may have a role in 
short-term tubular changes in the kidneys. These findings may inform 
future studies of children in CKDu-endemic areas, where a majority of 
current research is conducted with adult participants. 

Prior research has examined children's kidney function and time- 
varying PM exposure. A study conducted in China among 105 children 
aged 4–13 years old reported that personal exposure to PM2.5 was 
associated with a decrease in serum creatinine-based eGFR with a po-
tential 2-day lag (Liu et al., 2020). This differed from our study, which 
observed that PM2.5 was associated with an increase in serum cystatin C- 
based eGFR among 2 to 5-day lag. However, we did observe a decrease 
in serum cystatin C-based eGFR among 21–31 day lag in our sensitivity 
analyses. This may be due to differences in exposure assessment or eGFR 
biomarker (serum creatine vs. cystatin C), since participants in the prior 
study carried personal monitoring devices to measure personal exposure 
and the current study used residential assessments to estimate ambient 
exposure. An 18-year longitudinal study conducted of 10,942 children 
and adolescents in Taiwan and Hong Kong (median age: 19 years) found 
that each 10 μg/m3 increase in yearly mean PM2.5 concentration was 
associated with decreased eGFR (β: − 0.45; 95 % CI: − 0.63 to − 0.28), 
after adjusting for ambient temperature and seasonality (Guo et al., 
2022). In an adult rat model study, urinary NGAL and EGF were 
increased with PM2.5 exposure in the second week of exposure, and 
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urinary B2M and cystatin C were increased with exposure to PM2.5 in the 
first, second, sixth, and eight weeks of exposure (Aztatzi-Aguilar et al., 
2016). Our study found that the association with A1M, a tubular kidney 
biomarker, became more positive closer to the date of visit when 
examining the thirty-day lag exposure to PM2.5. These results, as well as 
results from prior studies, may indicate that short-term exposure to 
PM2.5 might negatively affect tubular kidney function in children and 
adults. 

Our study had many strengths. The PROGRESS study is an estab-
lished prospective birth cohort with well-characterized demographic 
and covariate data. We were able to reconstruct exposure to ambient 
temperature and PM2.5 and concurrently examine their impact on kid-
ney function. However, repeated exposure to high ambient temperatures 
can cause harmful kidney effects which can be challenging to assess with 
traditional clinical measures, such as eGFR and serum creatinine (Hsu 
and Powe, 2017). It is important to note that debate exists regarding the 
use of cystatin C and/or serum creatinine when calculating eGFR and 
appropriateness of the various estimating equations (Farrington et al., 
2023; Ferguson et al., 2015; Inker et al., 2021). For example, acknowl-
edged differences of eGFR equations commonly applied in clinical set-
tings led to overestimation of eGFR among Black and Hispanic 
individuals and therefore equations that include race as a variable are no 
longer recommended (Delgado et al., 2021; Powe, 2020; Spencer et al., 
2023). Caution should be taken when applying estimating equations (e. 
g., were equations derived from data generated among diverse or pre-
dominantly White study populations) and whether the equations are 
most effective among individuals with extant CKD or renally ‘healthy’ 
individuals. Regardless of the estimating equation used, limitations of 
eGFR includes that it only reflects one of the physiological kidney 
functions, it cannot detect kidney damage at earlier stages, as the kidney 
injury biomarkers can, and lastly can be affected by disease conditions 
and factors that are not kidney-related (Zsom et al., 2022). Additionally, 
we used a panel of multiple proteins that have been established as early 
indicators of kidney injury. Many biomarkers of kidney injury, such as 
NGAL, are able to assess subclinical kidney injury, and are more sensi-
tive than the common clinical diagnostic measurements (Schinstock 
et al., 2013). Additionally, using customized panels, as well as urinary 
proteomics, with specific biomarkers for each functional region of the 
nephron may be more informative to determine damage sites in the 
kidney (Øvrehus et al., 2015). These kidney injury biomarkers, 
measured in the urine, are also less invasive compared to serum-derived 
markers, such as serum creatinine for eGFR. 

A potential limitation of this work is that timing of urine collection 
and whether it was the first urine of the day was not collected. Subse-
quent PROGRESS study visits are collecting information on urine 
collection time, since time of urine collection is a predictor of specific 
gravity and urine creatinine concentration (Gaines et al., 2010). To ac-
count for hydration status in our analyses we adjusted for urine specific 
gravity. Prior studies have reported that urine specific gravity is a 
preferred indicator to account for hydration status compared to creati-
nine normalized kidney injury biomarkers (Kuiper et al., 2021; White 
et al., 2010). Another limitation of our study is the lack of data on hu-
midity. Accounting for humidity would be important to address con-
founding and modification effects, especially since it can influence heat 
stress and dehydration as well as provide an account for the geograph-
ical region. We also did not evaluate time spent outdoors/physical ac-
tivity which might impact exposure to both PM2.5 and temperature. 

5. Conclusions 

We found that among children in the PROGRESS longitudinal birth 
cohort study, ambient temperature and PM2.5 exposure were associated 
with selected urinary kidney injury biomarkers. Recent short-term 
environmental exposures such as heat stress and air pollution may 
lead to subclinical glomerular or tubular injury in adolescents. Future 
studies are needed to further assess ambient temperature and PM2.5 and 

kidney injury biomarkers in children and adolescents, especially since 
nephrotoxic contributions to subclinical acute kidney injury can exac-
erbate chronic kidney injury at later life stages. 
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