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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Altered biological aging may harm long 
term health. 

• Early life lead exposure may influence 
biological aging and later health 
outcomes. 

• Using linear regression and generalized 
estimating equations, early life lead 
levels altered adolescent biological age. 

• Prenatal lead exposure appeared to be 
most influential for biological age. 

• Lead exposed males appeared to have 
increased biological age compared to 
females.  
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A B S T R A C T   

Few studies have related early life lead exposure to adolescent biological aging, a period characterized by marked 
increases in maturational tempo. We examined associations between prenatal and childhood lead exposure and 
adolescent biological age (mean 14.5 years) utilizing multiple epigenetic clocks including: intrinsic (IEAA), 
extrinsic (EEAA), Horvath, Hannum, PhenoAge, GrimAge, Skin-Blood, Wu, PedBE, as well as DNA methylation 
derived telomere length (DNAmTL). Epigenetic clocks and DNAmTL were calculated via adolescent blood DNA 
methylation measured by Infinium MethylationEPIC BeadChips. We constructed general linear models (GLMs) 
with individual lead measures predicting biological age. We additionally examined sex-stratified models and lead 
by sex interactions, adjusting for adolescent age and lead levels, maternal smoking and education, and pro
portion of cell types. We also estimated effects of lead exposure on biological age using generalized estimating 
equations (GEE). First trimester blood lead was positively associated with a 0.14 increase in EEAA age in the 
GLMs though not the GEE models (95%CI 0.03, 0.25). First and 2nd trimester blood lead levels were associated 
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with a 0.02 year increase in PedBE age in GLM and GEE models (1st trimester, 95%CI 0.004, 0.03; 2nd trimester, 
95%CI 0.01, 0.03). Third trimester and 24 month blood lead levels were associated with a − 0.06 and − 0.05 
decrease in Skin-Blood age, respectively, in GLM models. Additionally, 3rd trimester blood lead levels were 
associated with a 0.08 year decrease in Hannum age in GLM and GEE models (95%CI -0.15, − 0.01). There were 
multiple significant results in sex-stratified models and significant lead by sex interactions, where males expe
rienced accelerated biological age, compared to females who saw a decelerated biological age, with respect to 
IEAA, EEAA, Horvath, Hannum, and PedBE clocks. Further research is needed to understand sex-specific re
lationships between lead exposure and measures of biological aging in adolescence and the trajectory of bio
logical aging into young adulthood.   

1. Introduction 

Despite large-scale reductions in lead exposure sources, such as 
leaded paint and gasoline, childhood lead exposure remains a prevalent 
public health concern. In fact, 1 in 3 children, or around 800 million 
worldwide, are estimated to have elevated blood lead levels (UNICEF, 
2020). In Mexico, the national prevalence of elevated blood lead levels 
in children ages 1–4 years has been reported to be 17.4 % (Tellez-Rojo 
et al., 2022). Prevailing exposure is likely due to existing exposure 
sources, including residual lead paint in homes (Muller et al., 2018), 
industrial manufacturing sources including air and soil pollution, 
outdated infrastructure resulting in water contamination (Cradock et al., 
2022), and everyday consumer products such as jewelry and children's 
toys (Centers for Disease Control and Prevention, 2022; Guney and 
Zagury, 2014). In Mexico specifically, the main source of lead exposure 
results from lead glazed ceramics which are used to cook, store, and 
serve foods (Romieu et al., 1994). 

Environmental toxicant exposure in early life may alter biological 
processes that increase risk for adult disease, as outlined by the bio
logical embedding model (Shonkoff et al., 2009). Exposure in utero and 
in early childhood periods may be particularly detrimental as these are 
critical developmental periods, where neurological and physiological 
developmental processes are particularly susceptible to environmental 
exposures such as lead (Nelson and Gabard-Durnam, 2020). Children are 
especially susceptible to lead exposure given their increased intestinal 
absorption rates of lead compared to adults (Ziegler et al., 1978), and 
overall hand-to-mouth activity for exploration (Hauptman et al., 2017). 
There is evidence for adverse associations between lead exposure in the 
prenatal and postnatal period and adverse adolescent and adult neuro
cognitive (Stiles and Bellinger, 1993; Cecil et al., 2008) and health 
outcomes (Navas-Acien et al., 2007; Naicker et al., 2011). Still, although 
the associations between lead exposure and cognition are well-known, 
adolescence remains an understudied period of outcome assessment 
(Arnold and Liu, 2020) Despite widespread investigation of deleterious 
associations, further research is needed to understand biological 
mechanisms along the causal pathway and how lead exposure may 
become biologically embedded and impact health across the life course. 

There is increasing evidence that the toxicant and social environ
ment may be biologically embedded through accelerated biological 
aging of cells and tissues (Kochmanski et al., 2017; Simons et al., 2021). 
Biological aging can be measured via ‘epigenetic clocks’ (Horvath, 
2013) that quantify biological age via DNA methylation at specific CpG 
sites across the genome. Biological aging is thought to be predictable 
and correlates with chronological age. Biological age acceleration or 
deceleration, however, occurs when biological age is greater or less than 
chronological age, respectively. Environmental factors such as tobacco 
smoke (Carter et al., 2022) and air pollution (Wang et al., 2020; White 
et al., 2019), as well as social factors such as adversity (Marini et al., 
2020) and neighborhood deprivation (Lawrence et al., 2020), have been 
associated with biological age acceleration, while maternal prenatal 
selective serotonin reuptake inhibitor (SSRI) usage has been linked to 
biological age deceleration in infants (McKenna et al., 2021). In rodent 
models, lead exposure has been shown to alter age-related methylation 
(Faulk et al., 2014). 

Epigenetic clocks can provide a window into the biological aging of 
an individual in relation to their chronological age and are a potential 
predictor of long-term health (Marioni et al., 2016). Biological aging 
alteration has been associated with chronic disease development and 
mortality (Joyce et al., 2021; Hillary et al., 2020). Even in adolescence, 
biological age acceleration has been associated with physiological 
changes, such as accelerated pubertal development (Suarez et al., 2018), 
and alterations to brain volumes, cortical thickness, and cortisol surface 
area (Hoare et al., 2020), which may represent earlier aging and 
accelerated health risks. 

Few studies have examined associations between lead exposure and 
biological aging through epigenetic clocks (Herrera-Moreno et al., 2021; 
Javed et al., 2016). These studies reported no significant associations 
between prenatal lead exposure and infant biological aging. In adult 
samples, however, increasing lead exposure levels from the 25th to 75th 
percentile have been associated with a ~ 0.25- year increase in bio
logical age measured through all-cause mortality clocks (Lodge et al., 
2022). There remains a gap in the literature examining adolescent 
populations, a critical period of physiological development. 

To our knowledge, there are no studies examining associations be
tween early life lead exposure, during critical periods of development, 
and adolescent biological age while considering sex-based differences. 
The aims of this study were twofold: 1) To examine associations between 
prenatal and early childhood lead exposure and multiple epigenetic 
clocks and estimated telomere length in adolescence and 2) examine 
potential effect modification of sex on the relationship between lead and 
biological age. 

2. Materials and methods 

2.1. Population 

The current study included a subsample of participants in two of 
three cohorts comprising the Early Life Exposure in Mexico to Envi
ronmental Toxicants (ELEMENT) project. Between 1997 and 2005, 
women were recruited from prenatal clinics of the Mexican Social Se
curity Institute in Mexico City Hospital Gea González (Perng et al., 
2019). Offspring were followed at 12 and 24 months and again in 
adolescence. The analytical subsample for this study participated in an 
adolescent follow-up visit (N = 521 with available biological age vari
ables) and had previous blood lead level data spanning from prenatal to 
the early childhood period. Due to missing covariates and lead exposure 
variables, the analytical subsample ranged from N = 264 to N = 390 
depending on available data for each general linear model (GLM). The 
institutional review boards at the University of Michigan and the Mexico 
National Institute of Public Health approved the research protocols. 
Informed consent was obtained from parents of the participants, and 
assent was also received from the child participants starting at age 7 
years. 

2.2. Lead biomarkers 

Lead was measured in the mother during the prenatal and early 
postpartum period as well as in childhood. Maternal blood lead was 
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measured at each trimester of pregnancy and child blood lead was 
quantified at months 12 and 24 of age. Blood samples were collected and 
stored in trace-metal-free tubes by trained research assistants using a 
standardized protocol to avoid lead contamination. These samples were 
measured using graphite-furnace atomic-absorption spectroscopy 
(model 3000; Perkin-Elmer, Chelmsford, MA, USA) at a research facility 
of the American British Cowdray Hospital in Mexico City. Blood samples 
were also collected in the adolescent follow-up visit and measured via 
inductively coupled plasma mass spectrometry with dynamic reaction 
cell mass spectrometry (ICP-DRC-MS: Agilent 8900) using digested 
blood at the Michigan Department of Community Health Trace Metals 
Laboratory, a nationally accredited facility for lead analysis. All blood 
lead levels (BLLs) were above the reporting limit of detection (1 μg/dl) 
for both instruments. 

Maternal patella and tibia bone lead are considered valid measure
ments of cumulative prenatal lead exposure due to mobilization of lead 
from the bone during pregnancy and transfer through the placenta (Hu 
et al., 1991; Centers for Disease Control and Prevention Work Group on 
Lead and Pregnancy, 2010). Patella and tibia bone lead were assessed on 
each leg, between 1 and 12 months postpartum, using a K X-ray Fluo
rescence (K-XRF) instrument. The two estimates for each bone were 
obtained and these values were computed, averaged, and weighted by 
the inverse of the proportion of the measurement error corresponding to 
each measure as described (Téllez-Rojo et al., 2002). In this study, we 
considered only the first bone lead measure available for each mother; 
>90 % of observations were from the first month postpartum. 

2.3. DNA methylation assessment 

DNA isolated from blood leukocytes in adolescence were used to 
assay DNAm at ~850 K sites across the genome using the Infinium 
MethylationEPIC array (Moran et al., 2016). Within batch, samples were 
randomized across chips and chip positions and then hybridized and 
scanned at the University of Michigan Advanced Genomics Core via an 
Illumina iScan instrument, according to manufacturer's protocols for 
EPIC arrays. Data resulting from the BeadChip were processed according 
to a previously utilized pipeline (Goodrich et al., 2016a). Raw data 
including average betas, the proportion of methylated cytosines at a 
given site, were fed into R Project for Statistical Computing using minfi 
(Aryee et al., 2014). To remove unwanted technical variation estimated 
from control probes included on each chip, background correction, dye 
bias correction, and functional normalization were performed (Fortin 
et al., 2017). Probes that were poorly detected (in at least 5 % of sam
ples), known to be cross-reactive, and with polymorphisms in the CpG 
site or the single base extension site were excluded (Jansen et al., 2021). 

2.4. Biological age biomarkers 

Biological age was estimated using biomarkers that were calculated 
from the Infinium methylation data using publicly available software by 
Horvath et al. (Horvath, 2013) The data was uploaded to the New 
Methylation Age Calculator (https://dnamage.genetics.ucla.edu/new) 
to calculate multiple epigenetic clocks as well as estimated telomere 
length. We uploaded probe data after background and dye bias correc
tion before removing failed probes and quantile normalization (Jansen 
et al., 2021). Imputation and normalization through the default and 
recommended methods by the software were completed after uploading 
data to the calculator. The clocks generated for this study were the 
Horvath clock which was designed to be agnostic to the source of tissue 
type (Horvath, 2013); the Skin-Blood clock, a more robust estimator for 
skin, blood, or saliva samples (Horvath et al., 2018); the Hannum clock 
which was designed for blood samples (Hannum et al., 2013); and 
PhenoAge and GrimAge which are composite measures considered to be 
better predictors of all-cause mortality, cancers, and other adverse 
health outcomes compared to the original clocks (Levine et al., 2018; Lu 
et al., 2019a). We additionally calculated clocks which were trained on 

Infinium methylation datasets for children. We used the package 
‘methylclock in R (Pelegí-Sisó et al., 2021) to calculate the Pediatric- 
Buccal-Epigenetic (PedBE) clock and Wu's clock. PedBE was originally 
trained on buccal cell data from children ages 0 to 20 years. It performs 
best in buccal and saliva samples, with some utility in blood derived 
DNA from children (McEwen et al., 2020). Wu's clock was trained on 
samples from 0 to 18 year old children using blood DNA (Wu et al., 
2019). To calculate PedBE and Wu, we used fully processed betas (with 
quantile normalization) and used the default imputation procedure 
(KNN) for missing values. Finally, we calculated estimated telomere 
length (DNAmTL) which is a validated estimator of telomere length 
based on DNA methylation of 140 CpG sites (Lu et al., 2019b). DNAmTL 
has been shown to highly correlated with measured leucocyte telomere 
length. Additionally, DNAmTL has been shown to correlate more 
strongly with chronological age and serve as a better predictor of mor
tality and health outcomes compared to measured leucocyte telomere 
length (Lu et al., 2019b). 

We also calculated intrinsic epigenetic age acceleration (IEAA) and 
extrinsic epigenetic age acceleration (EEAA). IEAA is the residual after 
regressing the Horvath clock on chronological age and cell type esti
mates and is considered an indicator of cellular aging independent of 
cellular composition (Smith et al., 2019). By design, EEAA captures 
cellular methylation changes and extracellular changes in blood cell 
composition, and the method to obtain EEAA was previously described 
(Chen et al., 2016). 

Each epigenetic clock was regressed on chronological age where the 
residual represented the variable to be used in the analysis, here referred 
to as epigenetic age. The values are then independent of chronological 
age and positive or negative values indicate an accelerated or deceler
ated biological age compared to chronological age, respectively. In total, 
there were 521 observations for the epigenetic age variables including 
IEAA, EEAA, Horvath, Hannum, PhenoAge, Skin-Blood, GrimAge, 
DNAmTL, PedBE, and Wu. 

2.5. Covariates 

Covariates were selected based on a priori knowledge and a bivariate 
analysis relating covariates to biological age biomarkers. All models 
were adjusted for sex and chronological age at the adolescent follow-up 
visit. Maternal years of education and smoking during pregnancy were 
reported at the prenatal baseline visit via a research assistant adminis
tered questionnaire. Maternal smoking during pregnancy has been 
associated with alterations in DNA methylation within the infant, child, 
and adolescent epigenome (Joubert et al., 2016; Rauschert et al., 2019). 
Maternal education was included as a proxy for socioeconomic status, 
which has been associated with longitudinal alterations to DNA 
methylation (Needham et al., 2012; Needham et al., 2021) and biolog
ical age acceleration (Fiorito et al., 2017). Adolescent BLLs were 
included as a covariate to determine if any associations between pre
natal or early childhood lead exposure and biological age were actually 
due to concurrent adolescent BLLs. Finally, because blood is a hetero
geneous tissue, we adjusted for proportions of various cell types in each 
sample in our models. The proportion of cell types were measured using 
methods based off of Infinium methylation data. Specifically, we esti
mated proportions of CD4+ and CD8+ T cells, natural killer (NK) cells, B 
cells, monocytes and granulocytes along with relative abundance of 
plasmablasts and 3 sub-populations of T-cells that change with aging 
(CD8 + CD28-CD45RA-, naive CD4+ and CD8+ T cells) using the soft
ware developed by Horvath et al. (Horvath, 2013; Lu et al., 2019a) 

2.6. Statistical analysis 

We first assessed Pearson's correlations between the epigenetic 
clocks (variables not regressed on age) and chronological age and 
calculated mean absolute error (MAE), a measure of the difference be
tween chronological age and the clock's estimated age. Next, we 
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compared descriptive statistics for biological age and sociodemographic 
variables for the full sample and by sex using t-tests and chi-square tests. 
We further tested for differences in demographic and predictor variables 
between the included and excluded sample using t-tests and chi-square 
tests. To test associations between lead values (1st-3rd trimester blood, 
12 & 24 month blood, and tibia and patella bone) and biological age in 
adolescence, we constructed generalized linear regression models 
(GLMs). We constructed a single model for each lead variable predicting 
biological age outcomes and adjusted for covariates. GLMs for IEAA and 
EEAA did not include cell type proportions as covariates, as these values 
by design take into account cell composition. All other biological age 
outcomes included cell covariates. As a sensitivity analysis, we log- 
transformed all lead variables and reran models. To consider effect 
modification by sex, we conducted sex-stratified models for each bio
logical age outcomes. We next ran the GLMs while including a lead x sex 
interaction. To investigate significant interactions, we mean centered 
the lead values and plotted simple slopes for values of lead at the mean 
and at ±1 μg/dl increments above and below the mean for both males 
and females. Finally, to examine the joint effects of lead exposure across 
multiple collection periods on biological aging, we constructed modified 
generalized estimating equations (GEEs). In these adjusted models, lead 
exposure variables were structured as repeated measures at each time 
point to predict each biological age outcome. This method, unlike GLM, 
allows for correlation between the repeat exposure measures and assists 
in determining windows of susceptibility for exposures (Sánchez Brisa 
et al., 2011). We additionally tested for significant differences between 
exposure associations in each GEE model. As a secondary analysis, we 
also included models without cell type adjustment and examined dif
ferences between the original models (Supplemental Tables 1–3). 

3. Results 

In our subsample, there were 268 females (Table 1; 51.94 %). Mean 
age was 14.5 years and did not significantly vary by sex. Mean years of 
maternal education was 10.92 years and few mothers reported smoking 
during pregnancy (n = 17, 3.29 %). Epigenetic clocks values varied 
significantly between males and females. For those that did significantly 
vary, males appeared to have greater epigenetic age and shortened 
DNAmTL compared to females, except PhenoAge, where females were 
greater than males. Maternal BLL means at each trimester ranged from 
4.95 to 5.62 μg/dl. Maternal postpartum mean bone lead measures of 
the tibia and patella were 9.11 and 10.69 μg/g, respectively. Child mean 
BLLs increased from 12 (4.36 μg/dl) to 24 months (4.64 μg/dl). When 
comparing the analytic and excluded samples, there were no significant 
differences in demographic characteristics or predictor variables except 
for two measures. Excluded participants had significantly greater 12 
months BLLs (Analytic sample mean: 4.95 μg/dl; excluded sample mean: 
5.59 μg/dl; p = 0.047) and were more likely to have mothers who re
ported smoking during pregnancy (Reported smoking in analytic sam
ple: n = 17, 3.28 %; p = 0.031; Reported smoking in excluded sample: n 
= 54, 5.83 %). 

The epigenetic clock variables and DNAmTL were significantly 
correlated with chronological age (Supplemental Fig. 1). All associations 
were positive, except DNAmTL, which showed a negative association as 
chronological age increased, as expected (r = − 0.4053, p < 0.000). 
MAEs ranged from 0.43 to 3.88. 

The adjusted GLMs were run to examine associations between early 
life lead exposure and adolescent biological age using the calculated 
epigenetic age measures and DNAmTL. The final covariate cell-types 
included CD4+ T cells, NK cells, monocytes, granulocytes, plasma
blasts, CD8 + CD28-CD45RA-, and naïve CD8+ T cells as suggested by 
Horvath et al. (Horvath, 2013). For EEAA, a 1 μg/dl increase in 1st 
trimester maternal blood lead was significantly associated with a 0.14 
year increase in EEAA (Table 2: 95%CI 0.03, 0.25). There were no other 
significant associations for IEAA and EEAA in the GLM models, however, 
GEE models suggest 3rd trimester maternal blood lead was associated 

with a 0.07 year decrease in EEAA (95%CI -0.15, − 0.003) while 
maternal tibia bone lead was associated with a 0.08 year increase in 
IEAA (95%CI 0.001, 0.15). Among pediatric epigenetic clocks, a 1 μg/dl 
increase in 1st trimester blood lead (Table 3: 95%CI 0.004, 0.03) and 
2nd trimester blood lead (95%CI 0.01, 0.03) were associated with a 
0.02 year increase in PedBE age in GLMs. The GEE analysis also sug
gested 2nd trimester maternal blood lead as associated with a 0.02 year 
increase in PedBE age (95%CI 0.003, 0.03). In a secondary analysis 
without adjustment for cell types, 1st trimester blood (β = 0.02; 95%CI 
0.001, 0.03) and tibia (β = 0.01; 95%CI 0.001, 0.02) bone lead levels 
were additionally associated with accelerated Wu age (Supplemental 
Table 1). For adult epigenetic clocks, a 1 μg/dl increase in 3rd trimester 
blood lead was associated with a 0.08 year decrease in Hannum age 
(Table 4: 95%CI -0.15, − 0.01) which was replicated in the GEE findings. 
This association was not significant in models without cell type adjust
ment (Supplemental Table 1). The GEE analysis also showed maternal 
tibia bone lead was associated with a 0.08 year increase in Horvath age 
(95%CI 0.001, 0.15). A 1 μg/dl increase in 3rd trimester blood lead was 
associated with a decrease in 0.06 years (Table 4: 95%CI -0.09, − 0.02) 

Table 1 
Participant characteristics.   

N Mean ± SD (or number and %) p- 
Value 

Total Males Females  

Child characteristics      
Age (years)  523 14.5 ±

2.11 
14.50 ±
2.05 

14.52 ±
2.17  

0.911 

IEAA  521 0.01 ±
3.28 

0.32 ±
3.24 

− 0.26 ±
3.30  

0.043* 

EEAA  521 0.29 ±
4.11 

0.80 ±
04.16 

− 0.16 ±
4.03  

0.008* 

Horvath  523 17.54 ±
4.20 

18.21 ±
4.10 

16.94 ±
4.20  

0.001* 

Hannum  523 11.17 ±
3.83 

11.48 ±
3.82 

10.90 ±
3.83  

0.083 

PhenoAge  523 2.79 ±
6.00 

2.08 ±
5.48 

3.42 ±
6.38  

0.011* 

Skin-Blood  523 10.51 ±
2.41 

10.45 ±
2.34 

10.56 ±
2.47  

0.617 

GrimAge  521 21.72 ±
3.48 

21.88 ±
3.18 

21.58 ±
3.73  

0.31 

PedBe  523 7.33 ±
0.63 

7.36 ±
0.59 

7.30 ±
0.66  

0.224 

Wu  523 8.36 ±
0.77 

8.41 ±
0.77 

8.32 ±
0.76  

0.200 

DNAmTL  523 7.69 ±
0.17 

7.65 ±
0.16 

7.73 ±
0.16  

0.000* 

12 month blood lead  409 4.36 ±
3.13 

4.51 ±
3.04 

4.24 ±
3.20  

0.811 

24 month blood lead  452 4.64 ±
3.44 

4.71 ±
3.82 

4.59 ±
3.03  

0.646 

Maternal 
characteristics      

1st Trimester blood 
lead (mcg/dl)  

372 5.62 ±
4.25 

5.39 ±
3.68 

5.84 ±
4.73  

0.156 

2nd Trimester blood 
lead (mcg/dl)  

379 4.95 ±
4.04 

4.83 ±
3.83 

5.06 ±
4.24  

0.286 

3rd Trimester blood 
lead (mcg/dl)  

360 5.38 ±
4.13 

5.22 ±
3.53 

5.53 ±
4.63  

0.232 

Tibia bone lead 
(mcg/g)  

295 9.11 ±
7.04 

9.56 ±
7.70 

9.01 ±
7.33  

0.736 

Patella bone lead 
(mcg/g)  

336 10.69 ±
8.68 

10.48 ±
8.38 

11.86 ±
9.69  

0.083 

Years of school  520 10.92 ±
2.91 

11.11 ±
2.85 

10.75 ±
2.96  

0.159 

Smoking during 
pregnancy  

516     0.933 

Yes  17 (3.29 
%) 

8 (3.23 
%) 

9 (3.36 %)  

No  499 
(96.71 %) 

240 
(96.71 %) 

259 
(96.64 %)   

* Student t-test or χ2 test was used for significant difference test. 
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and 24 month blood lead associated with a decrease in 0.05 years (95% 
CI -0.09, − 0.005) for Skin-Blood age. The GEE analysis replicated 
findings for 3rd trimester maternal blood lead and Skin-Blood age only, 
and additionally suggested a significant association between maternal 
tibia bone lead and a 0.04 increase in Skin-Blood age (95%CI 0.01, 
0.07). In models without cell type adjustment, 1st trimester blood lead 
was associated with a 0.18 year increase in PhenoAge (Supplemental 
Table 1: 95%CI 0.05, 0.30). Considering all GEE results, differences in 
exposure associations at different time periods was only significant for 
the Skin-Blood clock (p = 0.0003). In our sensitivity analysis with log- 
transformed lead variables, there were no significant differences in 
model fit or in observed associations. 

Throughout these analyses, sex was a significant predictor of bio
logical age. In sex-stratified models, males and females differed in the 
direction of significant associations. For females, 3rd trimester lead 
exposure was associated with a decreased Hannum, Skin and Blood, and 
IEAA age (Figs. 1 and 2). For males, however, 1st trimester lead expo
sure was associated with increased PedBE and EEAA ages, while 2nd 
trimester lead exposure was associated with increased PedBE only 
(Figs. 2 and 3). 

There were multiple significant interaction effects, all suggesting 

that males experienced biological age acceleration related to increasing 
lead exposure in both the prenatal and childhood periods. We present 
significant results for lead by sex interactions in GLMs in Supplemental 
Table 3 and an example plotted interaction in Fig. 4. Both prenatal and 
childhood lead exposure were associated with biological age accelera
tion for males and deceleration for females. For example, the interaction 
effects for 1st trimester, 3rd trimester, 12 month, and 24 month blood 
lead and males were positively significant for both IEAA and Horvath 
age (Supplemental Table 3). For both the EEAA and Hannum clocks, 12 
month blood lead appeared to have a significant interaction where 
males showed accelerated biological aging. Finally, 3rd trimester BLLs 
significantly interacted where males saw an accelerated PedBE clock. 
The models reported in Supplemental Table 3 include each lead measure 
centered at their mean value. Investigating the margins showed that 
while the effect of lead on accelerated biological aging for males did 
reach significance in some models as lead increased, females also saw 
significant decelerated biological aging as lead levels increased (Fig. 4). 
There were no significant interactions between bone lead levels and sex. 

Table 2 
Generalized linear regression (GLM) and generalized estimating equation (GEE) results for cell based epigenetic clocks.  

Lead values IEAA   EEAA    

GLM  GEE3  GLM   GEE  

N β 95 % CI β 95%CI N β 95 % CI β 95%CI 

Maternal bone and blood lead1           

1st Trimester (mcg/dl) 361 − 0.01 − 0.09, 0.08  − 0.02 − 0.11, 0.06  361  0.14 0.03, 0.25*  0.000 − 0.07, 0.07 
2nd Trimester (mcg/dl) 369 − 0.02 − 0.11, 0.07  − 0.03 − 0.11, 0.06  369  0.08 − 0.03, 0.19  − 0.02 − 0.09, 0.06 
3rd Trimester (mcg/dl) 350 − 0.08 − 0.17, 0.01† − 0.07 − 0.16, 0.06  350  − 0.03 − 0.13, 0.08  ¡0.07 ¡0.15, ¡0.003* 
Tibia (g/mg) 264 − 0.03 − 0.09, 0.03  0.08 0.001, 0.15*  264  − 0.004 − 0.08, 0.07  0.02 − 0.04, 0.08 
Patella (g/mg) 275 − 0.02 − 0.06, 0.03  − 0.02 − 0.08, 0.04  275  − 0.03 − 0.08, 0.03  − 0.02 − 0.07, 0.03 
Child blood lead1           

12 month (mcg/dl) 288 − 0.03 − 0.15, 0.09  − 0.05 − 0.15, 0.05  288  − 0.04 − 0.20, 0.12  − 0.07 − 0.16, 0.01 
24 month (mcg/dl) 331 − 0.02 − 0.14, 0.08  − 0.01 − 0.10, 0.07  331  − 0.05 − 0.19, 0.08  − 0.06 − 0.14, 0.01 
Adolescent blood lead2 390 − 0.04 − 0.17, 0.08  − 0.07 − 0.17, 0.04  390  0.04 − 0.12, 0.19  0.02 − 0.07, 0.03 
p-value; joint effects of lead exposure in GEE   0.2753     0.3905  

1 Models adjusted for age, sex, adolescent blood lead, maternal smoking and schooling, and proportions of cell types CD4 + T, NK, Mono, Gran, PlasmaBlast, +CD28- 
CD45RA-, naïve CD8+ T. 

2 Models adjusted for age, sex, maternal smoking and schooling, and proportions of cell types CD4 + T cells, natural killer cells, monocytes, granulocytes, plas
mablasts, +CD28-CD45RA-, naïve CD8 + T cells. 

3 GEE N = 515, with 2715 observations. Model adjustment1. 

Table 3 
Generalized linear regression (GLM) and generalized estimating equation (GEE) results for pediatric epigenetic clocks.  

Lead values PedBE   Wu     

GLM   GEE3  GLM   GEE  

N β 95 % CI β 95 % CI N β 95 % CI β 95 % CI 

Maternal bone and blood lead1           

1st Trimester (mcg/dl) 361 0.02 0.004, 0.03*  0.01 − 0.00, 0.02  361  0.01 − 0.004, 0.03  0.01 − 0.002, 0.03 
2nd Trimester (mcg/dl) 369 0.02 0.01, 0.03  0.02 0.003, 0.03*  369  0.003 − 0.01, 0.02  0.01 − 0.01, 0.02 
3rd Trimester (mcg/dl) 350 − 0.001 − 0.01, 0.01  − 0.004 − 0.02, 0.01  350  0.001 − 0.01, 0.02  0.002 − 0.01, 0.02 
Tibia (g/mg) 264 0.003 − 0.01, 0.01  0.003 − 0.01, 0.01  264  0.01 − 0.003, 0.01  0.01 − 0.0004, 0.03†
Patella (g/mg) 275 − 0.001 − 0.01, 0.01  0.002 − 0.01, 0.01  275  0.003 − 0.01, 0.01  0.01 − 0.01, 0.02 
Child blood lead1           

12 month (mcg/dl) 288 0.001 − 0.02, 0.02  0.01 − 0.01, 0.02  288  − 0.02 − 0.04, 0.01  − 0.01 − 0.02, 0.01 
24 month (mcg/dl) 331 0.01 − 0.01, 0.02  0.01 − 0.01, 0.02  331  − 0.004 − 0.02, 0.02  0.001 − 0.01, 0.02 
Adolescent blood lead2 390 − 0.1 − 0.03, 0.01  − 0.005 − 0.02, 0.01  390  0.003 − 0.02, 0.02  0.02 − 0.002, 0.03†
p-value; joint effects of lead exposure in GEE   0.4095     0.5990  

* p < 0.050. 
1 Models adjusted for age, sex, adolescent blood lead, maternal smoking and schooling, and proportions of cell types CD4 + T, NK, Mono, Gran, PlasmaBlast, +CD28- 

CD45RA-, naïve CD8+ T. 
2 Models adjusted for age, sex, maternal smoking and schooling, and proportions of cell types CD4 + T cells, natural killer cells, monocytes, granulocytes, plas

mablasts, +CD28-CD45RA-, naïve CD8 + T cells. 
3 GEE N = 515, with 2715 observations. Model adjustment1. 
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4. Discussion 

Our findings suggest that prenatal lead exposure may alter trajec
tories of biological aging, as approximated via the adolescent epi
genome. Results from GLMs suggest 1st trimester blood lead levels were 
associated with biological age acceleration in adolescence via the EEAA 
and PedBE clocks. However, 3rd trimester and 24 month blood lead 
levels were associated with a decelerated Skin-Blood age as well as 
Hannum age (3rd trimester only). Results from the GEE analysis largely 
replicated the GLM results, while also suggesting significant associations 
between maternal tibia bone lead and accelerated biological aging. 
There was a significant sex-stratified associations and lead x sex inter
action throughout our analyses where males appeared to have greater 

associations between lead and biological age acceleration compared to 
females, who saw biological age deceleration. Overall, our results sug
gest that early life lead exposure has a long-lasting influence on bio
logical aging, stretching into adolescence. 

To our knowledge, this is the only study available examining asso
ciations between prenatal and childhood lead exposure and adolescent 
biological age. Two previous studies of prenatal lead exposure and in
fant biological age reported non-significant associations (Herrera-Mor
eno et al., 2021; Javed et al., 2016). We report, however, few significant 
associations between prenatal blood lead and altered adolescent bio
logical age, both accelerated and decelerated aging, suggesting that 
associations between prenatal lead exposure and biological age become 
observable after early childhood. While we hypothesized that early life 

Table 4 
Generalized linear regression (GLM) and generalized estimating equation (GEE) results for adult epigenetic clocks and DNAmTL.  

Lead values Horvath Hannum 

GLM   GEE3 GLM  GEE  

N β 95 % CI β 95 % CI N β 95 % CI β 95 % CI 

Maternal bone and blood lead1           

1st Trimester (mcg/dl) 361 0.004 − 0.09, 0.10  − 0.02 − 0.11, 0.06  361  0.01 − 0.06, 0.08  0.00 − 0.06, 0.06 
2nd Trimester (mcg/dl) 369 − 0.01 − 0.10, 0.07  − 0.03 − 0.11, 0.06  369  − 0.01 − 0.08, 0.06  − 0.02 − 0.08, 0.05 
3rd Trimester (mcg/dl) 350 − 0.07 − 0.15, 0.02  − 0.07 − 0.16, 0.01  350  ¡0.08 ¡0.15, ¡0.01  ¡0.07 ¡0.14, ¡0.002* 
Tibia (g/mg) 264 − 0.03 − 0.09, 0.03  0.08 0.001, 0.15*  264  − 0.01 − 0.05, 0.04  0.02 − 0.04, 0.08 
Patella (g/mg) 275 − 0.02 − 0.06, 0.03  − 0.02 − 0.08, 0.04  275  − 0.03 − 0.07, 0.002† − 0.02 − 0.07, 0.03 
Child blood lead           
12 month (mcg/dl) 288 − 0.02 − 0.15, 0.10  − 0.05 − 0.15, 0.05  288  − 0.05 − 0.15, 0.04  − 0.07 − 0.15, 0.01†
24 month (mcg/dl) 331 − 0.02 − 0.13, 0.09  − 0.01 − 0.10, 0.07  331  − 0.08 − 0.18, 0.01† − 0.06 − 0.13, 0.01†
Adolescent blood lead2 390 − 0.05 − 0.17, 0.08  − 0.07 − 0.17, 0.04  390  0.02 − 0.08, 0.11  0.01 − 0.06, 0.09 
p-value; joint effects of lead exposure in GEE   0.2779     0.3909   

Lead values Skin-Blood PhenoAge     

GLM   GEE  GLM   GEE  

N β 95 % CI β 95 % CI N β 95 % CI β 95 % CI 

Maternal bone and blood lead1           

1st Trimester (mcg/dl) 361 0.000 − 0.04, 0.04  − 0.01 − 0.05, 0.02  361  0.06 − 0.04, 0.17  0.04 − 0.06, 0.14 
2nd Trimester (mcg/dl) 369 − 0.02 − 0.05, 0.02  − 0.02 − 0.06, 0.01  369  0.02 − 0.08, 0.13  0.02 − 0.08, 0.12 
3rd Trimester (mcg/dl) 350 ¡0.06 ¡0.09, ¡0.02*  ¡0.06 ¡0.10, ¡0.03*  350  − 0.02 − 0.13, 0.08  − 0.03 − 0.13, 0.07 
Tibia (g/mg) 264 − 0.003 − 0.03, 0.02  0.04 0.01, 0.07*  264  0.02 − 0.05, 0.09  0.08 − 0.01, 0.17†
Patella (g/mg) 275 − 0.01 − 0.03, 0.01  0.02 − 0.01, 0.04  275  0.02 − 0.03, 0.08  0.03 − 0.04, 0.11 
Child blood lead           
12 month (mcg/dl) 288 − 0.04 − 0.09, 0.01  − 0.04 − 0.08, 0.004† 288  − 0.05 − 0.20, 0.10  − 0.05 − 0.17, 0.06 
24 month (mcg/dl) 331 ¡0.05 ¡0.09, ¡0.005  − 0.04 − 0.07, 0.001† 331  − 0.10 − 0.22, 0.03  − 0.08 − 0.19, 0.02 
Adolescent blood lead2 390 − 0.04 − 0.09, 0.01† − 0.03 − 0.07, 0.02  390  − 0.03 − 0.18, 0.12  − 0.005 − 0.12, 0.11 
p-value; joint effects of lead exposure in GEE3   0.0003*     0.3066   

Lead values GrimAge  DNAmTL 

GLM   GEE GLM  GEE  

N β 95 % CI β 95 % CI N β 95 % CI β 95 % CI 

Maternal bone and blood lead1           

1st Trimester (mcg/dl) 361 − 0.02 − 0.09, 0.05  − 0.02 − 0.09, 0.04  361  0.000 − 0.003, 0.003  − 0.000 − 0.003, 0.003 
2nd Trimester (mcg/dl) 369 − 0.03 − 0.10, 0.04  − 0.04 − 0.11, 0.02  369  0.002 − 0.002, 0.005  0.001 − 0.002, 0.004 
3rd Trimester (mcg/dl) 350 0.03 − 0.04, 0.10  0.004 − 0.06, 007  350  0.002 − 0.001, 0.005  0.001 − 0.002, 0.004 
Tibia (g/mg) 264 0.04 − 0.01, 0.09† 0.04 − 0.01, 0.10  264  − 0.001 − 0.003, 0.001  − 0.001 − 0.003, 0.002 
Patella (g/mg) 275 0.02 − 0.02, 0.05  0.005 − 0.04, 0.05  275  0.001 − 0.001, 0.002  − 0.000 − 0.002, 0.002 
Child blood lead           
12 month (mcg/dl) 288 0.03 − 0.07, 0.12  0.02 − 0.06, 0.09  288  0.001 − 0.003, 0.01  − 0.000 − 0.004, 0.003 
24 month (mcg/dl) 331 0.02 − 0.07, 0.10  0.004 − 0.06, 007  331  0.001 − 0.002, 0.005  − 0.001 − 0.004, 0.002 
Adolescent blood lead2 390 ¡0.11 ¡0.20, ¡0.01*  − 0.04 − 0.12, 0.04  390  − 0.003 − 0.01, 0.002  − 0.003 − 0.01, 0.001 
p-value; joint effects of lead exposure in GEE   0.5872     0.8621  

* p < 0.050. 
1 Models adjusted for age, sex, adolescent blood lead, maternal smoking and schooling, and proportions of cell types CD4 + T, NK, Mono, Gran, PlasmaBlast, CD8 +

CD28-CD45RA-, naïve CD8 + T. 
2 Models adjusted for age, sex, maternal smoking and schooling, and proportions of cell types CD4 + T cells, natural killer cells, monocytes, granulocytes, plas

mablasts, CD8 + CD28-CD45RA-. naïve CD8 + T cells. 
3 GEE N = 515, with 2715 observations. Model adjustment1. 
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Fig. 1. Forest plot of GLM results for sex-stratified analysis of adult epigenetic clocks and DNAmTL.  
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lead exposure would be associated with accelerated biological aging, in 
some GLMs we report the opposite finding, of lead being associated with 
biological age deceleration. This finding was replicated in our GEE an
alyses, where lead exposure effects showed both negative and position 
associations with biological aging measures. Other environmental ex
posures in childhood, such as pesticides, have been cross-sectionally 
associated with decelerated biological age of the Skin-Blood clock in 
children (de Prado-Bert et al., 2021). Further study is needed with 
prenatal lead exposure and multiple epigenetic clocks in adolescence to 
determine associations and build the evidence base. It would also be 
beneficial to observe how clock estimates change throughout 

adolescence into young adulthood to determine the influence of lead on 
biological aging during this critical developmental period, assess change 
in maturational tempo, and relation to health outcomes. 

Our study found significant sex-stratification results and interaction 
effects between lead x sex where males saw a positive association be
tween lead and biological age acceleration, compared to females who 
saw biological age deceleration. In general, males in our sample had 
greater biological age compared to females, consistent with other re
ports suggesting that male sex is significantly associated with acceler
ated age in multiple epigenetic clocks (Oblak et al., 2021; Horvath et al., 
2016; Crimmins et al., 2021). Epigenome-wide studies have also found 

Fig. 2. Forest plot of GLM results for sex-stratified analysis of IEAA and EEAA.  

Fig. 3. Forest plot of GLM results for sex-stratified analysis of pediatric epigenetic clocks.  
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sex-dependent associations between lead exposure and cord blood 
leukocyte DNA methylation (Sen et al., 2015) and LINE-1 methylation in 
peri-adolescents (Goodrich et al., 2016b). Differences in associations 
could be due to the maturational timing in this adolescent sample 
(Suarez et al., 2018). For example, in a previous study of the ELEMENT 
cohort, 2nd trimester blood lead was associated with delayed age at 
menarche, which may suggest slower physiological and biological aging 
for females compared to males (Jansen et al., 2018). Across human and 
animal studies alike, there have been significant sex-based difference in 
associations between prenatal and postnatal exposure and later cogni
tion (Singh et al., 2018), neurobehavior (Halabicky et al., 2022), and 
growth and development (Zhou et al., 2020), where males appear to be 
more susceptible. Further investigation considering how biological age, 
and whether accelerated or decelerated biological age, changes over 
time would help to better understand sex-differentiated associations 
between lead and biological aging in adolescence and into adulthood. 

Currently, validated epigenetic clocks have been trained on adult 
and pediatric samples; there are no clocks trained specifically on 
adolescent populations. The rapidness of physical and biological 
development in the adolescent period warrants an epigenetic clock 
specifically trained to this age period. While our results suggest that 
early life lead exposure is associated with altered adolescent biological 
age, our findings could be influenced by the inaccuracy of the clocks in 
this developmental period. Horvath, the Skin and Blood, and Hannum 
clocks were trained for ages from birth to centurion and are theoretically 
able to capture the ages of our sample. However, there are questions 
whether such pan-tissue clocks are able to identify tissue-specific aging, 
such as the cardiovascular or metabolic systems, which lead is known to 
target (Bell et al., 2019). GrimAge was designed to capture smoking 
related methylation changes to predict mortality (Lu et al., 2019a), 
which may not be a significant factor in our sample. Further, as Phe
noAge was trained on a sample 21 years and up, and GrimAge on a 
sample with a mean age of 66 years, these clocks may be imprecise for 
the age of this sample. Wu and PedBE were trained on 0–18 and 0–20 
years, respectively. PedBE, however, was trained on buccal samples, 
which is a more homogeneous sample and has a high degree of DNA 
stability, and may, therefore, be less reliable in blood. Recently, a novel 
epigenetic clock specifically trained for adolescence and young adult
hood has been developed, which may be fruitful for future research 
(Aanes et al., 2023). 

Accelerated or decelerated biological age in adolescence has been 
associated with adverse health outcomes. Adolescent biological age (i.e., 
EEAA and IEAA) has been associated with inflammation, increased BMI 
5 years later, and probability of middle aged cardiovascular disease 
(Huang et al., 2019). At birth, biological age declaration via the Horvath 
clock has been associated with increased height and fat mass at age 17 

years (Simpkin et al., 2017). Horvath biological age acceleration in 
adolescents has been associated with accelerated puberty via Tanner 
staging (Binder et al., 2018), higher salivary cortisol upon awakening, 
and greater odds for internalizing and thought problems on the Child 
Behavior Checklist (Suarez et al., 2018). Additionally, greater EEAA in 
adolescence has been linked to alterations to brain structures including 
volumes, cortisol thickness, and cortical surface area (Hoare et al., 
2020). Overall, there is too little evidence to suggest what altered bio
logical age, either accelerate or decelerated, in adolescence means for 
later health and developmental outcomes. Longitudinal studies are, 
therefore, needed to determine what effects alterations in biological 
aging during the critical adolescent period may mean for health later in 
life. 

Prenatal lead exposure appeared to have more significant associa
tions with adolescent biological age in both GLM and GEE models, which 
mirrors findings from other studies examining the influence of early life 
lead exposure on neurocognitive and cardiometabolic outcomes. For 
example, umbilical cord blood lead, a prenatal measure, has been 
inversely associated with 18 month fine motor scores (Lu et al., 2023). 
However, others have reported significant associations of childhood, 
and not prenatal, lead exposure on IQ outcomes in 12 year olds (Tatsuta 
et al., 2020). Considering cardiometabolic health, others have reported 
significant associations between both prenatal and postnatal lead 
exposure on repeated measures of metabolic syndrome at 6 and 8 years 
old, while we report only effects of prenatal exposure (Muciño-Sandoval 
et al., 2021). While our results add evidence to the literature base, 
further research is needed to elucidate relationships and determine if the 
associations between early life lead and adolescent biological age last 
into later adolescence and young adulthood, or if associations become 
more observable in later life. For example, one study has shown that 
originally non-significant cross-sectional associations between child
hood adversity and biological age became later significant in early 
adulthood (i.e., epigenetic clocks at 23 years) (Copeland et al., 2022). 
Further longitudinal study with repeated measures of both lead expo
sure and biological aging will help to determine if there are critical 
periods for exposure which alter the epigenome and how these re
lationships change across the life course. 

Our results suggest no significant associations between prenatal or 
childhood lead exposure and adolescent DNAmTL estimated from DNA 
methylation. Other examinations in newborns report late-pregnancy 
urinary lead (considered in a mixture) was negatively association with 
cord blood leukocyte telomere length (Cowell et al., 2020), while others 
report no association with maternal blood lead or postpartum bone lead 
(Herrera-Moreno et al., 2021). Concurrent blood lead levels in 8-year- 
olds have been negatively associated with relative telomere length 
(Pawlas et al., 2015). It is possible the significant association between 

Fig. 4. Interactions between prenatal blood lead levels (BLLs) and sex for IEAA.  
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early life lead and telomere length attenuates as adolescents age and 
further study is needed to clarify these associations. 

4.1. Strengths and limitations 

To our knowledge, this is the first study to examine associations 
between prenatal and childhood lead exposure and adolescent biolog
ical aging. Among strengths of the study, we examined a number of 
epigenetic clocks, including adult and child specific clocks. We tested 
multiple timepoints of lead exposure and included multiple biomarkers 
(i.e., blood and bone measures) in the prenatal and early childhood 
periods while also controlling for concurrent lead exposure in our linear 
regression and GEE models. Still, there are limitations to be considered. 
First, it is unclear whether these epigenetic clocks are accurate for 
predicting biological aging in this adolescent population as most of the 
clocks were trained on either adult or younger child populations as 
discussed above. Further, considering our use of blood to estimate 
clocks, some clocks, such as PedBE which was originally trained on 
buccal cells and may not be as precise in blood samples. Second, while 
we included multiple measures of prenatal and childhood lead exposure 
measured in the blood, these measures were all biomarkers of acute lead 
exposure as compared to chronic or cumulative exposure. While we did 
include maternal bone lead measures in the postpartum period, a mea
sure of maternal cumulative exposure, we were not able to include 
measures of cumulative exposure in the adolescents. Future research 
should consider other biomarkers of chronic lead exposure, such as bone 
or hair measurements, to determine if exposure at specific critical pe
riods or overall cumulative exposure is associated with biological age. 
Third, single timepoints of biological aging are limited and future 
assessment of change in biological age over time would better elucidate 
these relationships. Finally, while we selected covariates that are 
routinely adjusted for in analysis of biological aging, such as maternal 
smoking, there may be other prenatal or childhood experiences, such as 
social stressors, that are impactful on biological aging that are not 
captured in our analysis. 

5. Conclusion 

We report that prenatal lead exposure, and few childhood lead 
exposure measures, was a significant predictor of few biological age 
measures captured via epigenetic clocks in this sample of adolescents. 
There were significant sex-stratification associations and lead x sex in
teractions, where males saw a positive association between prenatal and 
childhood lead exposure and accelerated biological aging for multiple 
epigenetic clocks compared to females, who saw decelerated biological 
aging. Our results suggest that exposure to lead during critical periods of 
development as well as cumulative lead exposure may alter the rate of 
biological aging. While evidence is still limited, future research could 
examine biological aging as a pathway through which lead exposure 
becomes biologically embedded and increases risk for adverse health 
outcomes into adulthood. Additional research with repeat epigenetic 
clock measurements would help capture change in biological aging and 
maturational tempo throughout the adolescent period in relation to 
early life lead exposure. Such study could also help tease apart sex- 
differentiated associations. In addition, future research can consider 
biological age as a mediator between lead exposure and known associ
ations with neurocognitive and cardiometabolic health outcomes. 
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