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ABSTRACT
Exosomes are extracellular vesicles derived from the endosomal compartment, which are released by all kinds of eukaryotic
and prokaryotic organisms. These vesicles contain a variety of biomolecules that differ both in quantity and type depend-
ing on the origin and cellular state. Exosomes are internalized by recipient cells, delivering their content and thus contribu-
ting to cell–cell communication in health and disease. During infections exosomes may exert a dual role, on one hand,
they can transmit pathogen-related molecules mediating further infection and damage, and on the other hand, they can
protect the host by activating the immune response and reducing pathogen spread. Selective packaging of pathogenic
components may mediate these effects. Recently, quantitative analysis of samples by omics technologies has allowed a
deep characterization of the proteins, lipids, RNA, and metabolite cargoes of exosomes. Knowledge about the content of
these vesicles may facilitate their therapeutic application. Furthermore, as exosomes have been detected in almost all bio-
logical fluids, pathogenic or host-derived components can be identified in liquid biopsies, making them suitable for diag-
nosis and prognosis. This review attempts to organize the recent findings on exosome composition and function during
viral, bacterial, fungal, and protozoan infections, and their contribution to host defense or to pathogen spread. Moreover,
we summarize the current perspectives and future directions regarding the potential application of exosomes for prophy-
lactic and therapeutic purposes.
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Introduction

Cells from all living systems can release bioactive vesicles
into biological fluids that allow intercellular communication
[1,2]. Among these extracellular vesicles, exosomes have
been the subject of increasing interest in the past few
years [3]. Exosomes are endosome-derived vesicles of
30–100nm which were first discovered in reticulocytes
[4–6]. For a long time, their secretion was thought to be a
mechanism to dispose cellular waste [6,7], however, now
the increasing research in the exosomes field has shown
that they can transfer a wide variety of biomolecules allow-
ing cell-to-cell communications [8]. Moreover, exosomes
can be secreted by a wide variety of mammalian cells
including lymphocytes, dendritic cells (DC), stem cells,
astrocytes, epithelial cells and hepatocytes [9–11], and can
act either locally or by distant signaling being released in
body fluids [10,12,13]. In humans, they have been impli-
cated in normal conditions such as neuronal function, lacta-
tion, and immune response, and during diseases like
cancer, neurodegenerative diseases, infections, liver disease,
etc. [7,9,11,13–16].

As the process of exosome secretion seems to be evolu-
tionary conserved among different eukaryotes and prokar-
yotes organisms [1,10,17], during an infection host- and
pathogen-derived exosomes are released into the extracel-
lular milieu [18]. The content of these vesicles will transmit
messages that can either limit or disseminate the infection
[19]. Recently, the exosome-dependent pathways of infec-
tion of important human pathogens such as the human
immunodeficiency virus (HIV) [11,20], Ebola virus [21] and
Mycobacterium tuberculosis [22], among others have been
characterized. This reflects the importance of the exosome
study in microbial pathogenesis. Moreover, the specific
composition of these vesicles derived from pathogens or
infected cells can be a hallmark of the infection and used
as a potential biomarker [23,24]. Furthermore, the hijacking
of exosomes by some pathogens has shown the carrying
capacity of these vesicles, which can be harnessed for vac-
cine development [25–29]. This review attempts to sum-
marize the current findings on exosome composition and
function during viral, bacterial, fungal and protozoan infec-
tions, their contribution to host defense or to pathogen
spread, and provide an insight into the potential applica-
tion of exosomes in biomedical research.

Exosomes structure and composition

All extracellular vesicles are limited by a lipid bilayer which
wraps a particular cargo of molecules [30]. Among these
vesicles, canonical exosomes are identified by a size of

30–100nm, a density of 1.13–1.19g/mL in sucrose gra-
dients, and sedimentation at 100,000g [31,32]. Due to their
small size, exosome morphology is analyzed by transmis-
sion electron microscopy where they are usually described
as cup-shaped vesicles, however, the more sophisticated
technique of cryo-electron microscopy has revealed its
rounded shape indicating that the cup-shape may be an
artifact generated during sample processing [10,33].
Exosomes are also distinguishable from other secreted
vesicles because of their intracellular origin (endosome
membranes versus plasma membrane) and lipid compos-
ition [34].

Exosome composition may include all kinds of biomole-
cules (proteins, lipids, carbohydrates and nucleic acids) and
differs both in quantity and type of molecules depending
on the origin and cellular state [16,18]. Some components
of the exosomes are constitutive since they are required
for their biogenesis and trafficking, while others reflect the
cell of origin [2,5]. Among the components that are typic-
ally found in mammalian exosomes are cytoskeletal pro-
teins including actin, tubulin and myosin; tetraspanins
including CD9, CD63, CD81 and CD82; adhesion proteins
(integrins) as well as proteins related to the multi-vesicular
body biogenesis as clathrin, Alix and ubiquitin; membrane
trafficking proteins (e.g. Rabs and annexins); metabolic
enzymes, heat shock proteins and antigen presentation
molecules [2,35–37]. Some of these proteins are currently
used as conventional exosome markers [38–40].

The mammalian exosomal lipid membrane has been
described as enriched in sphingomyelin, saturated fatty
acids, phosphatidylserine, and cholesterol compared with
the composition of the plasma membrane [5,36,37].
Lysophosphatidic acid which is key for exosome biogenesis
[39], the ganglioside GM3, ceramide and lipid raft micro-
domains containing glycosphingolipids, cholesterol, and
some proteins have also been reported in the exosomal
membrane [5,37]. Exosomes also contain a specific signa-
ture of nucleic acids including a variety of mRNAs, frag-
ments of tRNAs, microRNAs, Y-RNAs, small nuclear RNA,
small nucleolar RNAs, piwi-interacting RNAs, vault-RNAs
and long non-coding RNAs [35]. In addition, the presence
of oncogenes and transposable elements of DNA has been
reported [41,42], whereas the presence of ribosomal RNA
and mitochondrial DNA in the exosomes has been associ-
ated with cell death during the sample preparation
[37,43,44]. Although many reports on exosomal proteomics
and nucleic acid contents have been issued, very little
is known about the composition of carbohydrates
in exosomes. N-glycans including paucimannosidic,
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high-mannose and complex type glycans have been iden-
tified in exosomes from human urine samples [45–47].

During infection, exosomes undergo alterations in
number, content and membrane structure [48], below
we describe some of these changes associated with
pathogen infections. Additionally, the specific contents
of exosomes and other extracellular vesicles in different
settings are available in databases such as Exocarta
(http://www.exocarta.org/), Vesiclepedia (http://microve-
sicles.org/), and EVpedia (http://evpedia.info) [49–51].

Biogenesis of exosomes

Multiple stimuli, such as cell differentiation, activation, hyp-
oxia and infections are responsible for inducing cell vesicu-
lation [35]. In this process, cytosolic components and
membrane-associated molecules are enclosed within endo-
somes, whose main fate is to degrade their content by fus-
ing with lysosomes [48]. However, the components
bearing some specific hallmarks of late endosomes such as
the major histocompatibility complex class II (MHC-II) or
the tetraspanin CD63 can release their content to the
extracellular space [40]. Mammalian exosome biogenesis
begins in the late endosomes with the formation of small
vesicles called intraluminal vesicles which are generated by
the inward budding of the late endosomal membrane
[35,52]. These vesicles accumulate within large multivesicu-
lar bodies, which can then fuse with lysosomes or with
the plasma membrane to release the content in form of
exosomes [37]. Although the process of exosome gener-
ation has not been completely elucidated and is presum-
ably to be cell-specific, two kinds of mechanisms for
exosome biogenesis have been proposed [53,54]. The
mechanism that requires the recruitment of the
Endosomal Sorting Complex Required for Transport
(ESCRT), composed of four separated complexes (0-III) plus
associated proteins, has been extensively described
[55–57]. ESCRT-0 through II recognize ubiquitinated pro-
teins for cargo sorting, whereas ESCRT-I and II plus add-
itional factors induce endosomal membrane budding.
Subsequently, ESCRT-III binding to ESCRT-I results in cargo
deubiquitination and vesicle scission [58].

Alternative ESCRT-independent mechanisms for exo-
some biogenesis have also been identified. These path-
ways involve raft-based microdomains of lipids,
tetraspanins or heat-shock proteins [40]. Endosomal
membranes are enriched in sphingolipids and sphingo-
myelinases, which convert sphingolipids to ceramide
[59]. It is thought that the cone-shaped ceramide indu-
ces endosomal membrane budding [52]. Another ESCRT-

independent manner of exosome biogenesis through
tetraspanin-enriched microdomains has been suggested
to be specific for sorting certain receptors and signaling
proteins into exosomes [60]. Apparently, different speci-
alized mechanisms for exosome biogenesis may occur
depending on the cellular origin [52].

Characterization and analysis of exosomes

Exosomes are identified by their physical characteristics
(e.g. size, density, sedimentation, morphology) and the
presence of exosome marker proteins (e.g. CD63, CD9,
Alix, HSP70, etc.) [35,40,48]. Several techniques and pro-
tocols have been described for the isolation and charac-
terization of exosomes obtained from different sources
[31,33,45,61,62]. Ultracentrifugation is the golden stand-
ard method for exosome isolation, they can be obtained
with high purity from cell culture media using this
method, however, it is not convenient when working
with more complex matrices like body fluids [52]. For
such applications, size exclusion methods are more rec-
ommendable since chromatography can better preserve
the integrity of exosomes present in physiological sam-
ples [52]. Immune affinity capture using magnetic beads
can also isolate exosomes with high specificity but with
low yields [63]. Newly developed techniques including
commercial kits, microfluidic technologies, field flow
fractionation and contact-free sorting can enable high-
throughput analysis with high sensitivity [52,64].

Characterization of exosomes is usually performed by
transmission electron microscopy, dynamic light scatter-
ing and nanoparticle tracking analysis. Nevertheless,
other methods including flow cytometry, surface plas-
mon resonance, tunable resistive pulse sensing and sin-
gle extravesicular analysis are also available (Details: [64,
65]). Finally, for a more comprehensive characterization
of exosome content, mass spectrometry is the conven-
tional technique used for the analysis of proteins, carbo-
hydrates and lipidic cargo of exosomes, while PCR is
used to study nucleic acids [52,61,64,66–68]. In Table 1
we summarized the methods currently available for the
purification and characterization of exosomes.

Although, the exosomes field is relatively new, efforts to
homogenize the nomenclature, size, morphology and iso-
lation, have been made since 2013 [69,70]. For instance,
the International Society of Extracellular Vesicles has urged
researchers to describe the methods employed for extra-
cellular vesicles isolation, in order to allow others to repli-
cate and interpret their findings. As a result of
international consensus, the ‘Minimal information for
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studies of extracellular vesicles’ was first published in 2014
[70] and updated in 2018 [71]. Recently, reports indicate
that these guidelines have being widely accepted by the
scientific community specialized in the field [72], demon-
strating a promising future.

Exosomes released from infected cells

Exosomes have emerged as key players in the intercellu-
lar transport of substances, information and communica-
tion between eukaryotic cells to maintain the body
homeostasis of living organisms to different cell stimuli
[2]. Once released, exosomes usually bind to target cells
and exert their functional effects, whether in the local
environment or at distant sites [73]. Furthermore, these
vesicles can cross natural host barriers and have specific
cell targeting effects as well as stability in circulation
due to their contents [74]. These characteristics are
advantageous since exosome analysis can be used as a
sensitive and non-invasive method for detection in real-
time and at different stages of the disease [75–78].
However, these exosome properties can also be deleteri-
ous. As is well-known, viruses can adopt many mecha-
nisms to evade immune system recognition to survive
[79] and exosomes may play an important role in this
process. Exosomes released from infected cells can regu-
late the immune response and therefore contribute to
the spread of infection [35]. Thereby, these vesicles may
allow the escape of cells in any stage of infection and

hide them from the immune system [80–83]. Many
pathogens utilize the exosome pathway to efficiently
transfer virulence factors and host components from
infected cells to naïve cells [84–88]. Besides, enclosure in
these vesicles seems to be fundamental to it. In the fol-
lowing paragraphs, we describe exosome cargo for dif-
ferent infectious agents (Figure 1).

Viral cargo in exosomes and their potential effects
during viral infections

Studies have demonstrated that exosomes are involved in
the intercellular transportation of substances and informa-
tion exchange among cells during viral infections [89–91].
On one hand, exosomes can be advantageous to the virus
by facilitating infection and spreading [80,92], as well as
cancer progression and metastasis [84]. Because of this,
exosomes are called the Trojan Horses of viruses and can-
cer [93]. When virions (and their components) are released
through the exosomes, this mechanism offers an alterna-
tive route that avoids cellular damage, such as lysis, and
exerts protection from circulating neutralizing antibodies
[80,85,94]. Some viral and host components carried on
exosomes might also contribute to pathogenesis, like in
the case of pathogen miRNAs and viral nucleic acids
[84,95,96]; as well as tenascin-C involved in fibrosis during
COVID-19 [97].

Furthermore, oncogenic viruses which are responsible
for approximately 15% of human tumors [98] take

Table 1. Exosome purification and characterization methods. Abbreviations: HPLC, high performance liquid chromatograpy; HSP70, heat
shock protein 70; LSRP, localized surface resonance plasmon; PCR, polymerase chain reaction; TSG101, Tumor susceptibility gene
101 [52,61,64,66–68].
Isolation Characterization Cargo analysis
�Ultracentrifugation, density-gradient

ultracentrifugation�Size exclusion (filtration, chromatography)�Immune affinity capture (beads, ELISA, flow
cytometry, ExoCap kit)�Co-precipitation or polymer-based (ExoQuick)�Microfluidic technologies�Field flow fractionation�Contact-free sorting

�Microscopy-based methods (Scanning electron
microscopy, transmission electron microscopy,
cryo-electron microscopy, atomic force
microscopy)�Dynamic light scattering�Nanoparticle tracking analysis�Tunable resistive pulse sensing�Single extravesicular analysis method�Surface plasmon resonance�Flow cytometry (typical markers: CD63, Alix,
TSG101, HSP70, CD9)

�Proteins:
Western blot and ELISA
Mass Spectrometry
Small Particle Flow Cytometry
Micronuclear Magnetic Resonace
Surface Plasmon Resonance
Integrated magnetic-
electrochemical exosome sensor
ExoScreen�Nucleic Acids:
Conventional PCR
Droplet PCR
Microfluidics for On-Chip
extraction and detection
Ion-exchange nanodetector
LSRP-based assay�Lipids:
Mass spectrometry
Ultra-high HPLC
Cholesterol content analysis�Carbohydrates:
Glycomic microarrays
Mass spectrometry
HPLC
Nuclear magnetic resonance
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advantage of exosomes to enhance viral pathogenesis.
Oncogenic viral molecules (such as oncoproteins and
RNAs) encapsulated into exosomes have been demon-
strated to possess tumorigenic characteristics, such as
Epstein Barr Virus latent membrane proteins, and
Kaposi’s sarcoma herpesvirus miR-K12 which can be
detected in all individuals infected by those oncogenic
viruses and in virus-associated cancer cells [99,100].
Notably, exosomes that carry some oncogenes mole-
cules can promote tumor development [101].
Accumulated evidence has shown that exosomes
derived from oncogenic virus-associated tumors evade

immune system recognition helping viruses to survive
and accelerating cancer progression, possibly by deliver-
ing biologically active molecules that remodel the cellu-
lar microenvironment [79]. In this context, exosomes can
be a valuable tool as biomarkers for the diagnosis and
tracking of disease progression [12,75,78].

On the other hand, some of the exosomes-associated
molecules can activate the innate antiviral immune
response, showing that they can also have pro-host
effects. For instance, herpes simplex virus 1 (HSV-1) enc-
odes genetic material that restricts the transmission of
viruses from one cell to another [102]. Moreover,
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exosomes expressing the receptor angiotensin-convert-
ing enzyme 2 (ACE2) compete with cellular ACE2 for the
neutralization of the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) [103–105].

In Table 2 we summarized the viral components of
exosomes released from virus-infected cells and their
role in different biological processes. According to this
information, viral dissemination is one of the main
potential effects of the exosomes during viral infections,
reaching distant tissues, and consequently, longer and
persistent infections can be better established
[80,83,106,107]. In this regard, other effects like viral per-
sistence and a higher replication may also be related to
viral dissemination. Exosome-viral cargo may also induce
immune suppression and immune evasion, by decreas-
ing the normal response of the immune cells (like NKs
or DC) [77,108–113], and avoiding the immune cell rec-
ognition [82,110,114,115]. Tumor induction and tumor
progression are common effects of the exosomes related
to the oncogenic viruses [100,116–118]. Altogether these
effects of the exosomes’ viral cargo suggest that exo-
somes contribute mainly to viral replication, dissemin-
ation and persistence within the body, with likely an
impact on disease progression.

Pathogenic and commensal bacteria-
derived exosomes

The domains of life Archaea and Bacteria also secrete
vesicles that resemble mammalian cell-derived exosomes
and microvesicles [17]. While mammalian exosomes bio-
genesis involves the endosomal systems, the extracellu-
lar vesicles from bacteria are generated by membrane
blebbing, cell lysis or by extrusion of the cell membrane
and release through cell wall [311]. Similar to mamma-
lian exosomes, bacterial extracellular vesicles consist in a
lipid bilayer that encloses a variety of biomolecules
allowing communication between cells [312]. Outer-
membrane vesicles are heterogeneous size particles (10-
300 nm) released by Gram-negative bacteria and are
formed by the outer membrane filled with periplasmic
content [7,313]. Their cargo is highly mutable depending
on the physiological environment and the bacterial spe-
cies, and their functions are equally diverse as we
describe below.

Outer-membrane vesicles may play an important role
in pathogen infection since they can pack multiple viru-
lence factors and toxins that can be delivered into host
cells. Some Escherichia coli strains have been shown to
release vesicles containing toxins, such as the heat-labile

enterotoxin derived from enterotoxigenic E. coli
[227,228], and the Shiga toxin released from the Shiga
toxin-producing E. coli [235,236]. The vacuolating cyto-
toxin VacA of Helicobacter pylori has also been detected
in outer-membrane vesicles present in the human gas-
tric epithelium [250]; whereas the vesicles from
Actinobacillus actinomycetemcomitans are also cytotoxic
[196,197,199]. In addition to toxins, they can contain
other virulence factors including adhesins to allow inter-
action with host cells, proteases and signaling molecules
(Table 3).

The implications of outer-membrane vesicles acting
as delivery vehicles include the modulation of the host’s
innate and adaptive immune responses. For example,
the outer-membrane vesicles generated from Salmonella
stimulate the expression of the MHC-II and proinflamma-
tory cytokines in macrophages and DC [314]; H. pylori
and Pseudomonas aeruginosa vesicles induce a potent
interleukin-8 (IL-8) response [246,283]; whereas the
vesicles released from Neisseria activate DC inducing
MHC-II expression, and release of the chemoattractants
IL-8, RANTES and Interferon gamma-induced protein 10
(IP-10) [315]. This innate immune response may result
from the identification of vesicle pathogen-associated
molecular patterns (PAMPs) and lipopolysaccharide
(LPS). It is well-characterized that LPS is sensed by the
Toll-like receptor- (TLR-) 4 eliciting a pro-inflammatory
response [316]. In addition to LPS, other PAMPs in the
vesicles can activate the immune response. Vesicles
from P. aeruginosa contain flagellin monomers and CpG
DNA [283,317] which can be recognized by TLR-5 and
TLR-9, respectively.

Outer-membrane vesicles can also aid in bacterial sur-
vival under stress conditions and nutrient acquisition.
They can provide envelope stress relief through the dis-
posal of misfolded proteins, peptidoglycan fragments, or
lipopolysaccharide [318–320]. Moreover, vesiculation
increases during oxidative stress [318–321]. Furthermore,
these vesicles are also proposed to have a role in bacter-
ial community formation and provide nutrients during
colonization. For example, the outer-membrane vesicles
from Borrelia burgdorferi contain enolase which is essen-
tial to bacterial glycolysis and may contribute to colon-
ization [17,218]. Several bacterial species release outer-
membrane vesicles containing iron acquisition proteins
and receptors for haem groups, such as FetA and
FetB47 (iron transporter components) present in the
vesicles of N. meningitidis [272]; IhtB, HmuY and gingi-
pains released by Porphyromonas gingivalis [278]; as well
as CopB, the haem chaperone CcmE and the surface
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receptor transferrin-binding protein B from Moraxella
catarrhalis [322–324]. In addition, the zinc acquisition
proteins ZnuA and ZnuD47 have also been detected in
the outer-membrane vesicles of N. meningitidis showing
that metal acquisition through these vesicles is not only
restricted to iron [272].

As expected, not only pathogenic but also microbiota
bacteria release outer-membrane vesicles. It has been
reported that microbiota-derived vesicles can either pre-
vent or induce inflammation. For instance, Bacteroides
fragilis release outer-membrane vesicles containing a
capsular polysaccharide with immunomodulatory effects
that prevent experimental colitis [206], but in contrast,
the vesicles of Bacteroides thetaiotaomicron passing
through the gut mucosal barrier activate macrophages
and induce inflammation [325]. These differential effects
of the outer-membrane vesicles released by commensal
bacteria probably depend on vesicle content and host
susceptibility [17]. Additionally, the genus Bacteroides
generates vesicles that contain enzymes to metabolize
polysaccharides, acting as public goods and aiding other
bacteria with nutrient acquisition [326].

Some studies have addressed the capability of outer-
membrane vesicles to protect against antibiotics, phages
and toxins. It has been shown that effective antibiotic
concentration can be reduced by vesicle-mediated
absorption [327,328]; however, these vesicles can also
transport enzymes such as ß-lactamases [262,284,329]
that confer resistance to susceptible species, and, likely,
the DNA encoding antibiotic resistance can be trans-
ferred in these vesicles [327–330]. Furthermore, outer-
membrane vesicles can protect bacteria by binding and
inactivating phages as found in E. coli cultured with the
lytic T4 phage [327], whereas the hemin-binding protein
C (HbpC) packed into the vesicles of Bartonella henselae
protects the bacteria against toxic concentrations of
hemin [210].

Due to the thick cell wall present in Gram-positive
bacteria and mycobacteria, historically there was a lack
of interest in the study of their extracellular vesicles
since it was thought that their generation was not pos-
sible [331]. Recently, evidence of membrane vesicles
generated by Gram-positive bacteria and mycobacteria
emerged [22,264,265,302], although their biogenesis is
still not well understood [331].

The most studied membrane vesicles of Gram-positive
bacteria are from Staphylococcus aureus. They were char-
acterized as spherical structures of 20-100 nm [302] and
their proteomic analysis revealed virulence factors such
as ß-lactamase, coagulase and hemolysin [302].

Moreover, they have been found to induce inflammation
during atopic dermatitis [300] and in pulmonary inflam-
mation [303], and transfer ß-lactamase to ampicillin-sen-
sitive strains [329]. Some studies have shown that
Bacillus subtilis, Bacillus anthracis, Streptomyces coelicolor,
Listeria monocytogenes, Clostridium perfringens,
Streptococcus mutans and Streptococcus pneumoniae also
generate these vesicles [204,302,329,332–335].

In summary, the outer membrane vesicles released by
Gram-negative bacteria are enriched in periplasmic pro-
teins including efflux pumps and outer membrane pro-
teins [283,290,312]. They commonly contain virulence
factors that likely contribute to pathogenesis
[204,227,231,237,243]. In contrast to Gram-positive bac-
teria, outer-membrane vesicles contain LPS which acti-
vate the immune response [312,316]. In addition, these
extracellular vesicles protect bacteria against antibiotics
[209, 245, 262, 284], phages [327] and toxins
[223,228,235], allow the elimination of unwanted bacter-
ial products [318–320], and help in the acquisition of
nutrients that improve their survival [272,278,322]. They
can also modulate the host’s immune response
[246,283,314,315] and, in the case of the microbiota, are
often immunomodulatory [206]. The content of Gram-
positive bacteria and mycobacteria membrane vesicles
has been less described; however, they contain virulence
factors that may contribute to pathogenesis
[265,300,301,336]. Taken together, the load of bacterial
extracellular vesicles suggests that they contribute pri-
marily to bacterial survival, colonization and disease
progression.

Exosomes generated during fungus infections

In fungi, extracellular vesicles were discovered more
than a decade ago in the pathogen Cryptococcus neofor-
mans [337]. In contrast to mammalian cells and similarly
to Gram-positive bacteria, these fungal-vesicles have to
traverse a cell wall to be released, however, until now,
many steps of this process are still unknown [338]. It has
been suggested that vesicles would pass through chan-
nels for their release, that cell wall is remodelled by
enzymes facilitating areas for extracellular vesicles tran-
sit, or that they are forced to pass through cell wall
pores by turgor pressure [338,339]. Moreover, secretion
in the Fungi is particular, since the majority of proteins
lack the signal peptide [340], and different secretory
mechanisms may be involved including the conventional
route (ER-Golgi pathway), the ESCRT-mediated pathway
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and the one involving the Golgi reassembly stacking
proteins (GRASP) [311].

Fungal extracellular vesicles consist of a collection of
vesicular structures of 10 to 350 nm [87] combining
multi-vesicular body-derived exosomes, plasma-mem-
brane-derived microvesicles, and vesicle-like cytoplasmic
bodies [339–341]. So far, extracellular vesicles have been
characterized in different fungal species, where they par-
ticipate in a wide array of diverse mechanisms of
molecular export of lipids, polysaccharides, proteins and
nucleic acids [340,342,343] which have been described
as virulence factors. On this basis, these vesicles have
been proposed as key regulators of host-pathogen
mechanisms during fungal infections [343–346] and their
complete role in the interaction of pathogen-host is still
not fully understood.

In Table 4 we describe the cargo reported in the
extracellular vesicles from fungal infections and their
potential effect on the host. Their main effects are
related to the host-pathogen interaction [339,342,344]
and immune response modulation [347–350], which can
be both consequences of virulence factors carried in
these vesicles [87,345,346,351]. All these effects seem to
be key players in the mechanism of infection and per-
sistence in fungal diseases. These vesicles may also be
advantageous to the pathogens by transporting

molecules to adjust the physiology of the host and to
increase their survival.

Exosome secretion by the parasitic protozoan

In contrast to the vast information available regarding
other infections, studies about exosomes generated dur-
ing parasitic protozoans’ infections are limited. During
host-pathogen interaction protozoans employ evasion
mechanisms to subvert the immune response and estab-
lish the infection [365]. Transferring virulence factors,
genes that mediate drug resistance, as well as molecules
related to the host-pathogen interaction are likely medi-
ated by exosomes [26,358,359]. Among the potential
effects of exosomes derived from intracellular parasites,
Leishmania exosomes acting on macrophages may
dampen the innate immune response [360–364],
Trypanosoma cruzi may mediate host-parasite interac-
tions and immunomodulation [365,366], and transport
of proteins involved in drug resistance and host-patho-
gen interaction during Plasmodium falciparum infections
[88] may enhance parasite transmission [367] and dis-
semination of pathogenic material [368]. Among the
group of extracellular parasitic protozoa, Trichomonas
vaginalis exosomes have been involved with

Table 4. Fungal-related cargo in extracellular vesicles-like exosomes and their potential effect during fungal infections.
Fungus Cargo reported Potential effect References

Candida albicans GlcCer, sterols, RNA ND [344]
Cryptococcus neoformans GlcCer, sterols; SOD, thioredoxin, thioredoxin

reductase, thiol-specific antioxidant
protein, catalase A, enzymes essential to
glucuronic acid metabolism, urease,
laccase and acid phosphatase; RNA

Adhesion to target cells, modulation of the
host-pathogen interaction, host cell
damage and/or modulation of immune
response. Urease enhances the invasion
of host central nervous system

[337,344–346,351]

Histoplasma capsulatum Catalase B, SOD precursors and a thiol-
specific antioxidant protein, proteins from
the Rab family and HSP 6

Key molecules related to virulence, stress
response, and proteins involved in
vesicular transport and fusion

[87,352–355]

Malassezia sympodialis Antigens (allergens) Sensitization and maintenance of the
inflammatory response. Allergens may
induce inflammatory cytokine responses
and participate in allergic
immune response

[347]

Paracoccioides brasiliensis GlcCer, brassica sterol, ergosterol, and
lanosterol, galactopyranosyl epitopes,
residues of mannose and N-
acetylglucosamine, enzimes like
glyceraldehyde-3-phosphate
dehydrogenase and phosphatase and RNA

Mediation of host-cell adhesion, damage
and/or modulation of immune response

[346,348,349,356]

Saccharomyces cerevisiae RNA and proteins like glucanases, glucanosyl
transferases, peptidases, vacuolar and
secretory proteins; HSP and stress-
related proteins.

Cell organization and biogenesis,
transporters of macromolecules,
carbohydrate metabolism, stress response,
protein biosynthesis and degradation,
sporulation. Modulation of the host-
pathogen interaction

[341,346]

Sporothrix brasiliensis Proteins related to metabolism and
transport, serine/threonine protein kinases
and glucanase.

Mediation of host-cell damage and/or
modulation of immune response

[350,357]

For fungal extracellular vesicles-like exosomes, components including lipids such as sterols, polysaccharides like glucuronoxylomannan (GXM), proteins like urease,
and nucleic acids have been described as virulence factors in different fungal species. HSP: Heat shock protein; GlcCer: Glucuronoxylomannan, glucosylceramide; Rab
family: Ras-Related Proteins; ND: not determined; SOD: superoxide dismutase.
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immunomodulation, adhesion improvement, and host-
pathogen communication [369,370].

As shown in Table 5, the main effects observed for
the exosome cargo from parasites are immune modula-
tion [360–362,370–386], enhancement of parasite trans-
mission [373,376,387,388], cell-to-cell communication
[88,367,378,389], transport of virulence factors
[374,375,382,383], effects on parasite survival or infectiv-
ity [365,390–392], host-parasite interactions
[360,392–395] and less commonly evasion of the
immune system [394,396]. Therefore, parasite exosomes
seem to be more prone to modulate the immune sys-
tem for their benefit instead of evading it, the last could
be a consequence of the former.

Mammalian and microbial-derived exosomes: a
brief insight

Until now, we described the content of the exosomes
generated by different human pathogens, however, it is
important to highlight how microbial-derived and
human-derived exosomes are similar or differ. In this
context, despite their origin, exosomes are composed of
a lipid bilayer containing a variety of biomolecules that
allow communication between cells. Canonical exo-
somes (human) are identified in a range of 30–100 nm,
which is similar in size to the protozoan extracellular
vesicles-like exosomes (50–100 nm) [369] and the mem-
brane vesicles from Gram-positive bacteria (20–100 nm)
[302]. However, other exosomes can be bigger such as

Table 5. Parasite cargo in exosomes and their potential effect during parasitic infections.
Parasite Exosome cargo from parasites Potential effects References

Leishmania spp Leishmanolysin (GP63) (Leishmania spp);
SAcP, LmPRL-1 (L. major), HSP100 (L.
donovani), HSP10; in L. infantum HSP70,
HSP83/90 and acetylcholinesterase
activity, rRNA, tRNA and tRNA-derived
small RNAs (L. braziliensis and L.
donovani); siRNA-coding regions in L.
braziliensis, TRYP1, tryparedoxin
peroxidase, 14-3-3 like proteins

Modulation of macrophage PTPs and
transcription factors; inhibition of
macrophage IL-1b production;
intracellular survival of the parasites in
macrophages; regulation of protein
packaging into exosomes; augmented
number and intracellular survival of the
parasites in macrophages; RNAs could
regulate and mediate parasite-host cell
interactions; intracellular survival

[360–364,371–377,387,397]

Plasmodium falciparum EBA175 and EBA181, PfPTP2, P. falciparum
DNA, PfEMP1, rRNAs, snRNAs and tRNAs

Enhance parasite transmission; promote
gametocytogenesis of a subset of
parasites in vitro; dissemination of
pathogenic material to enhance virulence
via STING; cytoadherence of infected cells
to host endothelial receptors; proteins
involved in drug resistance and host-
pathogen interaction.

[88,367,368,378,379,389,393]

Plasmodium yoeli Proteins from the parasite like serine-repeat
antigens, merozoite surface proteins 1
and 9, enzymes, proteases and HSPs

ND [25]

Toxoplasma gondii mRNAs from Rab-13, EEF1A1, thymosin and
LLP protein homologue; miRNAs (miR-
23b, miR-146a and miR-155). SAG, MIC,
GRA, GPI, ubiquitin and cyclophilin,
HSP70, CD63, and T. gondii surface
marker P30.

Regulation of the host-parasite interaction;
pathogenesis

[380,381,390,398]

Trichomonas vaginalis Strain-specific factors and small RNA species Responsible for the binding phenotype,
parasite adhesion and modulation of
cytokines IL-6 and IL-8 in ectocervical
cells. RNA species of unknown function.

[369,370]

Trypanosoma brucei Virulence factors like serum resistance-
associated protein

Human infectivity [382]

Trypanosoma cruzi GP82, GP85/trans-sialidase family, TcSMP,
a-galactosyl glycoconjugates, FCaBP,
Cruzipain, TcPIWI-tryp, rRNA, mRNAs, and
small RNAs, phosphatase

Invasion to mammalian cells; cell adhesion,
ERK1/2 activation; parasite adhesion to
host cells; immune evasion and digestion
of ‘hinges’ off all humans IgG subclasses;
increasing metacyclogenesis and
susceptibility to infection; survival, and
establishment of infection in
Chagas disease

[365,366,383–386,388,391,392,394–396,399–408]

Specific parasitic components carried in exosomes and released into the host as well as their possible effect. EBA175: Erythrocyte binding antigen 175; EBA181:
Erythrocyte binding antigen 181; EEF1A1: eukaryotic translation elongation factor 1 alpha 1; FCaBP: Flagellar calcium-binding protein; GPI: glycosyl-phosphatidylinosi-
tol; GRA: dense granule proteins; GP63: Glycoprotein 63; GP82: Glycoprotein 82; GP85: Glycoprotein 85; HSP: Heat shock protein; LLP homolog: long-term synaptic
facilitation factor; LmPRL-1: L. major tyrosine phosphatase; MIC: Microneme proteins; mRNA: messenger RNA; ND: not determined; PfPTP2: Plasmodium falciparum
protein; PfEMP1: Plasmodium falciparum erythrocyte membrane protein 1; PTPs: protein tyrosine phosphatases; miRNA: microRNA; Rab-13: Ras-Related Protein Rab-
13; rRNA: ribosomal RNA; SAcP: membrane-bound secreted acid phosphatase; SAG: Surface antigen 1; siRNA: small interference RNA; snRNAs: small nuclear RNA;
TcSMP: Trypanosoma cruzi surface membrane proteins; TcPIWI-tryp: Trypanosoma cruzi AGO/PIWI protein; tRNA: transfer RNA; TRYP1: Tyrosinase-related protein 1.
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the outer-membrane vesicles (10–300 nm) [17,313], and
the fungus-derived exosomes (10–350 nm) [87].
Differences are also evident in the exosomes’ biogenesis.
Mammalian exosomes of infected and non-infected cells
are generated from the endosomal compartment by
ESCRT-dependent and independent mechanisms [53,54].
In contrast, outer-membrane vesicles are generated by
membrane blebbing [311], whereas the biogenesis of
the Gram-positive bacteria, mycobacteria and fungal
cells depend on the pass through a thick cell wall by
mechanisms that are not well understood [331,338,339].

As we described, exosome composition varies
depending on the cell type of origin. Therefore, the
types of exosomes which can exist are enormous for
superior organisms in comparison with unicellular organ-
isms. Moreover, exosomes’ content also depends on the
physiological or metabolic state of the cells, and their
microenvironment [18,30,106]. This is important because
according to the cell type, the exosome content could
be more ‘helpful’ to a particular infectious agent to
establish infection. For example, Hepatitis A virions
released from infected hepatocytes in form of exosomes
are protected from antibody-mediated neutralization by
the host-membranes [89].

Despite their origin, some molecules are common
among exosomes from different sources, and between
infected and uninfected cells, such as proteins involved
in exosome biogenesis and release [35,312]. Moreover,
exosomes derived from different pathogens contain a
particular cargo including virulence factors that may
have an impact on infectious diseases. As we present in
Figure 1, exosomes contain components that vary ran-
domly depending on the cell in which they were
formed. Modulation of the immune system, replication,
dissemination, antibiotics resistance, manipulation of the
microenvironment and modulation of the host-pathogen
interactions, are some of the effects induced by the exo-
some cargo from different microorganisms that may
contribute to pathogenesis.

Potential of exosomes as biomarkers for
infectious diseases

Exosomes are now intensively studied as possible bio-
markers in diagnosis, disease progression, prognosis and
therapy monitoring during infectious diseases
[23,75,78,409,410]. The cargo composition of exosomes
derived from healthy controls and individuals under-
going an infection has been proven to be different, and
in some instances track with pathology or disease

progression (as reviewed in [36,409]). For instance, exo-
somal protein CD81 was found elevated in the serum of
hepatitis C patients when compared to healthy controls
[24], and the thimet oligopeptidase A could be a poten-
tial diagnostic marker for T. brucei [411]; additionally,
urinary exosomes can help to detect kidney diseases
during viral and bacterial infections [75,76,412].
Moreover, studies with oncogenic viruses suggest that
cancer-secreted exosomes can change the tumor micro-
environment enhancing metastasis, inflammation, and
angiogenesis [101,172].

More recently, quantitative analysis of serum by omics
has allowed a deep characterization of exosome content.
For example, proteomic analysis of exosomes in cerebro-
spinal fluid of HIV patients suggests an exosome-based
protein signature in individuals with cognitive impair-
ment [23]; on the other hand, lipidome analysis in
COVID-19 patients and healthy controls indicate that
monosialodihexosyl gangliosides-enriched exosomes
positively correlated with disease severity [413], and
selective RNA cargoes are present under different stages
of M. tuberculosis infection [410].

Potential exosome-based immunotherapies for
infectious diseases

Due to their capacity as biological messengers, exosome
potential in therapeutics and vaccinology is enormous.
Their physical and chemical properties allow them to
transport a wide variety of cargo in a stable and tar-
geted manner, allowing intercellular communication
[2,35]. Therefore, the possibility of customizing its con-
tent by incorporating drugs, genetic modifiers or anti-
gens, among others, is of considerable scientific interest.
On top of that, they are biocompatible and safe [35].

A wide variety of research has been focused on the
design of exosome-based cancer therapeutic strategies;
however, fewer studies have focused on its possible
application in the area of infectious diseases. Among
them, DNA vectors expressing viral proteins fused at the
C-terminus of an exosome-anchoring protein have been
shown to induce cytotoxic T lymphocytes immunity
against antigens derived from Human Papillomavirus,
HIV-1, Hepatitis B Virus, Ebola, Influenza virus, West Nile
virus, Crimean-Congo Hemorrhagic Fever and Hepatitis
C Virus NS3 [414–416]. In other studies, based on the
principle of trogocytosis, exosomes from DC expressing
the HIV-1 antigen Gp120, a major target for HIV-1 vac-
cines, were used to stimulate CD8þ T cells inducing
in vivo and in vitro functional T cell responses [417,418].
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Moreover, this strategy allowed CD8þ T cells activation
independently of CD4þ T cells and DC, thus, offering
promising immunotherapy for AIDS patients with defi-
ciency of these cell populations [417–419]. Exosomes
containing miRNAs to block HSV-1 infection [420], as
well as exosomes containing a Y-class small RNA with
antiviral effects against influenza [421], have also been
developed. Moreover, an exosomal vaccine was achieved
through the replacement of the cytoplasmic and trans-
membrane domains of the S protein of the Severe
Acute Respiratory Syndrome Coronavirus 1 (SARS-CoV-1)
with those of the G protein of Vesicular stomatitis virus
inducing neutralizing antibodies in immunized mice [27].
More recently, some clinical trials investigate the safety
and potential efficacy of exosome-based therapies for
COVID-19 patients and long haulers (ClinicalTrials.gov).

Although extracellular vesicles derived from bacteria
have been associated with immune modulation [422],
several studies have demonstrated their potential use
for vaccination [62,211,244,423,424]. One of the most
outstanding applications is to control outbreaks caused
by N. meningitidis. There are vaccines based on capsular
proteins for most serogroups, except for the most preva-
lent (serogroup B) due to the risk of autoimmunity.
Then, the vaccine approach for serogroup B was based
on proteins from the outer membrane, mainly the porin
protein PorA, maintaining their stability in a membran-
ous environment such as the vesicles [62]. Due to the
high variation in PorA among B serogroup strains, there
is no universal vaccine to cover all N. meningitidis infec-
tions, however, outer-membrane vesicles-based vaccines
have been proven to be safe and effective to control
epidemics caused by this pathogen [62].

Advances in exosome research may also help to pre-
vent whooping cough caused by Bordetella pertussis.
Recently, an outer-membrane vesicles-based vaccine
showed to be more effective than the available commer-
cial pertussis vaccines in a mouse model [423]. Other
mouse immunization studies using this type of vesicles
have also been effective in conferring protection against
E. coli [230,424,425], N. meningitidis [426], Burkholderia
pseudomallei [427], Brucella melitensis [428], Shigella flex-
neri [429], Haemophilus influenzae [244] and Vibrio chol-
erae [430]. A bivalent vaccine candidate against enteric
fever was recently generated through engineering
outer-membrane vesicles containing the Vi polysacchar-
ide from Salmonella typhi and the somatic O-antigen
from Salmonella paratyphi A [431]. Using a different
approach, protection against M. tuberculosis and diph-
theria toxoid was achieved in mice by immunization

with exosomes derived from macrophages or DC treated
with bacterial antigens [432,433]. Moreover, macro-
phage-derived exosomes containing the antibiotic line-
zolid have also been effective against intracellular
methicillin-resistant S. aureus infections in vitro and
in vivo [336].

Since the bacterial outer membrane contains multiple
virulence factors including LPS and outer membrane
proteins, an alternative to reduce the potential toxicity
of outer-membrane vesicles is the generation of proto-
plast-derived nanovesicles. They lack outer membrane
components, can be produced at significantly higher
yields than outer-membrane vesicles, and are safer [434].
Furthermore, they can be loaded with different antigens,
emerging as an alternative for an adjuvant-free vaccine
delivery system [434]. On the other hand, bacterial-
derived exosomes have also been studied as adjuvants.
Outer-membrane vesicles derived from a nonpathogenic
mutant strain of E. coli containing penta-acylated LPS
have been shown to retain their T-cell adjuvant activity
with attenuated endotoxicity compared to hexa-acylated
LPS from the wild-type strain [424].

The potential use of exosomes to protect against
protozoan parasitic diseases has also been assessed. DC-
derived exosomes containing antigens from Toxoplasma
gondii are protective against this obligate intracellular
parasite in both syngeneic and allogeneic mouse models
[435]. They are also effective in the prevention of con-
genital and ocular infections [436,437]. Antigen-loaded
DC exosomes may be also able to serve as effective vac-
cines against Leishmania major as they produce protect-
ive immunity in mice [438]. Lastly, immunization of mice
with reticulocyte-derived exosomes obtained from mice
infected with a non-lethal strain of Plasmodium yoelii
attenuates parasitemia and increases the survival time
when challenged with a lethal P. yoelii strain [25].

To this date, on ClinicalTrials.gov using as search
terms ‘Exosomes’ and ‘infection’ there are 16 studies
evaluating exosomes as a treatment for infectious dis-
eases (exosomes as intervention). Among these studies,
15 are related to COVID-19, and one is for the treatment
of pulmonary infection with carbapenem-resistant Gram-
negative bacilli. Whereas searching for ‘outer membrane
vesicles’ and ‘infection’, 12 studies are evaluating vac-
cines for meningococcal disease and for N. gonorrhoeae
infections. However, except for MeNZB and BEXSERO
(outer-membrane vesicles-based meningococcal group B
vaccines) [62], no other exosome product or outer-mem-
brane vesicles vaccine has been approved for human
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use by the USA Food and Drug Administration (https://
www.fda.gov/).

Concluding remarks and future directions

Exosomes are a kind of extracellular vesicles released
from practically all cell types [9,10]. They are crucial
channels of communication since they can envelop a
wide range of contents, including all kinds of biomole-
cules such as nucleic acids, proteins, and lipids to target
specific recipient cells [16,30,35,41]. Therefore, these
vesicles play an essential role in homeostasis and partici-
pate in pathogenesis processes [30,41,111].

Exosome secretion is an evolutionarily conserved
mechanism among species, not only mammalian cells
but also microorganisms can transfer components via
exosomes [1,10,17]. Thus, during an infection, host- and
pathogen-derived exosomes can be found in the extra-
cellular milieu [18]. Numerous studies have shown that
exosomal composition changes during infection, some
of these exosomes can transfer host or pathogen com-
ponents between infected to uninfected cells or tissues
and contribute to the spread of the infection
[87,245,345,382]. Release of virions via exosomes as well
as immune evasion have also been reported [80,94].
However, exosomes can also help to limit infection pro-
gression and enhance the immune response [18]. Thus,
exosomes have an enormous importance due to their
implications in the host-pathogen interaction dynamic.
Further studies are needed to clarify the mechanisms
that determine host protection or infection/disease dis-
semination via exosomes.

Recent advances in the extracellular vesicles field have
shown the promising potential of exosomes as bio-
markers [14,30,48]. Since they can be released in almost
all biological fluids, detection of host-derived or pathogen
components can be identified in liquid biopsies (urine,
saliva, serum) avoiding the use of invasive approaches for
diagnostic and prognostic purposes [165]. The properties
of exosomes also make them attractive for therapeutics.
Some studies have addressed their possible application
for immunization against viral, bacterial and protozoan
infectious diseases [25,27–29]. Moreover, some exosomal
preparations are currently being used and others are
being evaluated in clinical trials [29,62,439]. Of note, in
several experimental approaches, exosomes are obtained
from antigen-presenting cells such as DC and macro-
phages [418,432,433,435]. These cells carry MHC-I and
MHC-II molecules on their surface, as well as other costi-
mulatory molecules such as CD86 that may promote the

activation of T cells [74], although, pathogen-associated
molecular patterns present in exosomes may also play a
role in the activation of the immune system [440].

Furthermore, the versatility of exosomes for packing
different cargo, specific targeting, and low immunogen-
icity, make them ideal candidates for drug-delivery sys-
tems [2,35]. However, some issues such as exosome
composition, preparation homogeneity, target specificity,
dosages and route of administration are critical to
achieving the desired effect and must be addressed
[2,61,409]. In this context, to deal with the poor target-
ing ability of natural exosomes, bioengineered exosomes
modified by physical, biological or chemical methods
are in development [312]. These kinds of preparations
derived from bacteria are of special interest to the
industry for their low-cost, the possibility of gene-editing
techniques and scalability [312]. This exemplifies the
promise that exosomes hold for translation to the clinic.

Future research in the exosomes field should be
focused on the development of new methodologies that
can distinguish between different subpopulations of
exosomes (host vs pathogen, cellular/tissue source, func-
tion and cargo), and ensure that sample processing (iso-
lation and purification) is standardized for its possible
translation to clinics [37,52,61]. Finding specific markers
for microbial-derived exosomes is still a challenge [312].
Moreover, to contribute to the development of novel
therapeutic strategies, an exhaustive investigation of
exosome biogenesis, sorting of cargo, and biological
functions in physiological and pathological conditions
are needed. Many steps of pathogen-derived extracellu-
lar vesicles biogenesis, in particular of the exosomes
derived from protozoan parasites, fungus and Gram-
positive bacteria, still have conceptual gaps. Lastly,
although important progress in the characterization of
exosomes during infectious diseases has been made, the
role and composition of many other pathogen-derived
exosomes remain to be uncovered.
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