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G R A P H I C A L A B S T R A C T
� Data from different health information
systems cannot be easily linked when
standardized ID codes are not available.

� Linking records from the same unit of
analysis makes it possible to perform key
epidemiological analysis.

� We evaluated the performance of a
blocking approach based on trigrams and
the EMalgorithm for probabilistic linkage.

� Our blocking achieved 95.76% pairs
completeness and a 99.9996%complexity
reduction in the validation sample.

� After classification in validation sample,
we achieved a sensitivity of 90.72% and
a positive predictive value of 97.10%.
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Linking records of the same person from different sources makes it possible to build administrative cohorts and
perform longitudinal analyzes, as an alternative to traditional cohort studies, and have important practical im-
plications in producing knowledge in public health. We implemented the Fellegi-Sunter probabilistic linkage
method to a sample of records from the Mexican Automated System for Hospital Discharges and the Statistical and
Epidemiological System for Deaths and evaluated its performance. The records in each source were randomly
divided into a training sample (25%) and a validation sample (75%). We evaluated different types of blocking in
terms of complexity reduction and pairs completeness, and record linkage in terms of sensitivity and positive
predictive value. In the validation sample, a blocking scheme based on trigrams of the full name achieved 95.76%
pairs completeness and 99.9996% complexity reduction. After pairs classification, we achieved a sensitivity of
90.72% and a positive predictive value of 97.10% in the validation sample. Both values were about one per-
centage point higher than that obtained in the automatic classification without clerical review of potential pairs.
We concluded that the linkage algorithm achieved a good performance in terms of sensitivity and positive pre-
dictive value and can be used to build administrative cohorts for the epidemiological analysis of populations with
records in health information systems.
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1. Introduction

The information systems and administrative records of the health
sector offer valuable information at the individual level. However, this
information cannot be easily integrated due to poor homogeneity and
lack of unique identifiers and standards for the registration of personal
data. The ability to link records of the same person from different sources
would make it easier to build administrative cohorts and carry out lon-
gitudinal analysis. These designs are valuable for the healthcare field not
only for their contribution to the development of knowledge, but also
because of their practical implications.

Within epidemiological study designs, cohort studies are useful
to approximate causal inferences between risk factors and health
outcomes [1]. However, their high cost, the long times between the
start and the occurrence of the events of interest, as well as the loss
of study subjects, limit their implementation. In this sense, the
construction of administrative cohorts by linking personal records be-
tween different health information systems is a complementary alter-
native to traditional cohort studies. The analysis of administrative
cohorts has contributed to the progress of knowledge in health in
different areas. For instance, it has been used to analyze the risk of
dementia in hospitalized patients with diabetes, the risk of pneumonia
in people with severe mental illness, the relationship between maternal
alcohol consumption and child protection, among other applications
[2, 3, 4].

To generate an administrative cohort from different data sources, a
method for linking the records corresponding to the same individual is
needed and must consider inaccuracies in the recording of personal
information that could emerge in practice. Deterministic linkage
methods have the disadvantage of requiring perfect match on the set of
selected attributes. When the identifier is not unique and there are
mistakes in the individual identifiers in the different data sources, it is
not possible to link the records because the group of auxiliary variables
or attributes do not match exactly. In situations such as confusion be-
tween homonyms, use of abbreviations, or -input errors, among others,
a higher number of records can be linked using a probabilistic
approach in which phonetic equivalences and similarity functions are
applied to each attribute.

The Fellegi-Sunter probabilistic linkage model [5] has proven to be
very useful for identifying the same person in different administrative
records. For each pair of records, a similarity score is generated based
on a ratio that expresses the probability of a matching result given
that the pair of records is from the same individual, relative to the
probability of the same matching result when the pair does not
belong to the same individual. The similarity score is used to classify
pairs and recognize those with a high probability of belonging to
the same person. This process requires the selection of a cutoff point
for the score, similarly to the approach in which diagnostic tests
are carried out to detect subpopulations with a certain disease or
condition [6].

Although the Fellegi-Sunter Model and probabilistic linkage
methods have been implemented in tools such as Link Plus [7], there
are practical limitations to use them with large databases. There is
currently no software available to probabilistically link records from
different information systems and data sources that is optimized for use
in Spanish language, and that can be used efficiently with large
databases.

In this paper, we present the implementation of a probabilistic link-
age algorithm in Stata [8] based on the Fellegi-Sunter methodology,
applied to databases of two information systems in Spanish. Then, we
assess its performance in terms of sensitivity and positive predictive
value. Additionally, we evaluate the pairs completeness of different types
of blocking to reduce the number of full comparisons between the two
sources of information.
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2. Methodology

2.1. Data

We used 2014 data from the Automated Subsystem of Hospital Dis-
charges (SAEH, acronym in Spanish) [9] and the Epidemiological and
Statistical Subsystem of Deaths (SEED, acronym in Spanish) [10]. The
administration of the SAEH and the SEED are under the responsibility of
the General Directorate of Health Information, through the Directorate of
Information on Health Needs and Population, of the Ministry of Health of
Mexico (MoH). SEED information is mostly collected in the Civil Registry
offices, and then captured in the health jurisdictions of the State Health
Services (SESA) and in some hospitals of the MoH. It covers the entire
population that inhabited or was present in the national territory at the
time of death. SAEH records contain information about the care provided
during a patient’s stay in hospitalization units managed by the MoH and
SESA, covering populations without social security, and those affiliated
to the National Health Protection Commission (Seguro Popular), this is
approximately 50% of Mexican population (people working in the
informal economic sector and their families).

SAEH data included 2,257,005 records of which 64,923 were death
discharges. SEED included 589,688 records, corresponding to all deaths
registered in the year in Mexico.

Access to the databases with personal information was possible
through a collaboration and confidentiality agreement between the Na-
tional Institute of Public Health and the General Directorate of Health
Information from the MoH.

2.2. Reference standard and study population design

We applied the linkage model using personal attributes such as name,
paternal surname, maternal surname, year of birth, sex, and the entity
and municipality of residence codes. To evaluate the performance of the
model, we used the death certificate folio (DCF) present for a subset of
records in both databases as a reference standard. We identified match-
ing cases with the same DCF and person name, and then we reviewed
cases with different names to rule them out. After this review, we found a
total of 44,762 people who met the matching condition in both sources.
For the linkage model implementation, the remaining records of hospital
discharges and death records were included in our analyses. The per-
formance evaluation was carried out only for the set of pairs for which its
status (true/false pair) could be determined through the reference stan-
dard. Both the reference standard and additional records were randomly
assigned to a training and a validation group (25% and 75%, respec-
tively). Table 1 shows the partition of all possible pairs of the training
group according to their source and condition of inclusion/non-inclusion
in the evaluation of the model.

Once the unsupervised linkage was carried out on the training sam-
ple, partitions A–D were used to assess its performance. This information
and the analysis of the classification errors informed the linkage that was
carried out in the validation sample, which was also evaluated.

2.3. Variable preparation

We removed special and duplicated characters, numbers, unnecessary
spaces, and gender articles in name and surname variables. We replaced
all characters with uppercase and completed name and surname abbre-
viations. Furthermore, we unified in names and surnames, those char-
acters with a high frequency of cognitive errors and equivalent or similar
phonetics in Spanish. Then, we replaced with a null value all the records
with invalid or missing information. After this procedure, 0.1% records in
SAEH and 0.2% in SEED were eliminated. We also eliminated all records
with ages less than 1 year (6% SAEH, 4% SEED) due to the lack of name
information in most of them.



Table 1. Partition of the total set of pairs of the training group.

Partition Source (number of records) Included in
performance evaluation

Number of
possible pairs

Number of
true pairs

SAEH SEED

A Reference standard (11,200) Reference standard (11,200) Yes 125,440,000 11,200

B Reference standard (11,200) Deaths, additional to standard (136,163) Yes 1,525,025,600 0

C Discharges alive (550,577) Reference standard (11,200) Yes 6,166,462,400 0

D Discharges death, additional to standard (5,521) Reference standard (11,200) Yes 61,835,200 0

E Discharges alive (550,577) Deaths, additional to standard (136,163) No 74,968,216,051 unknown

F Discharges death, additional to standard (5,521) Deaths, additional to standard (136,163) No 751,755,923 unknown

Total 567,298 147,363 83,598,735,174
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In SAEH, the variable year of birth was not available, so we calculated
it by subtracting the age from the year of admission to the medical unit.
We eliminated records without year of birth or enough data to calculate it
(0.01% SAEH, 0.9% SEED). In both sources, place of residence was
specified using state and municipality codes.

2.4. Blocking

The blocking phase consists of reducing the number of full compari-
sons, by filtering records pairs that show similarity in one of the attri-
butes. We evaluated the performance of different blocking types in
relation to their pairs completeness (percentage of total correct pairs
included in the analysis database) and complexity reduction (percentage
of total possible pairs not included in the analysis database). We assessed
different types of blocking applied to the name attribute that included the
Soundex and NYSIIS phonetic encodings [11], as well as a similarity
function from trigrams applied to the full name. Pairs that had a value
equal to or greater than a defined cutoff point in the proportion of tri-
grams that matched were filtered. More specifically, we used the simi-
larity function trigramscommon=minðtrigramsstringA ; trigramsstringBÞ where
trigramscommon is the number of trigrams present in two compared full
name strings and minðtrigramsstringA ; trigramsstringBÞ is the number of tri-
grams from the full name string with the lowest number of characters.
Before applying the function, a leading and ending special character was
added to all string chains. We evaluated the performance of different
cutoff points (i.e. a sequence in steps of 0.05 units, and then we evaluated
an intermediate point between the two best results) in the training group
in terms of pairs completeness and complexity reduction and selected the
cutoff point that minimized the loss function shown in Eq. (1), in which
the weights w1 ¼ 50 and w2 ¼ 0:01 were determined empirically to
facilitate the cutoff selection that provided balance between maximizing
pair completeness and minimizing complexity.

loss¼w1 �ð100�% complexity reductionÞþw2

� ð100�% pairs completenessÞ (1)

In the case of sex, year of birth, and residence codes, the blocking
consisted of pairs that showed a perfect match in such attributes. We
performed blockings for each of those attributes and assessed its
performance.

There are other approaches to pairs filtering [12]. Recent de-
velopments include the use of double-embedding record linkage and
meta-blocking techniques [13, 14].

2.5. Linking algorithm

We applied the Expectation-Maximization algorithm to the Fellegi-
Sunter model [5] to calculate the similarity score for classification. The
algorithm is based on the likelihood function [15] and alternates be-
tween the expectation (E) and maximization (M) steps, until finding
stability in the estimation of the similarity probabilities. More details of
the probabilistic linkage method and the EM algorithm can be found in
Herzog et al. [16].
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Let bp be the estimated proportion of true matching pairs; i ¼ 1;2; ::;K
the index of the attributes; K the total number of attributes; j ¼ 1;2; ::;N

the index of the compared pair; N the total number of pairs; γji an indi-
cator variable (0/1) that was set to 1 if the pair j coincides in the attribute
i; mi the probability of matching for the attribute i given that the pair is
true (true status means that the information coming from the two records
belongs to the same subject); and ui the probability of matching for the
attribute i given that the pair is incorrect (the information from the two
records belongs to different subjects). Steps E and M are described in the
following equations:

Step E – Expectation

bg j ¼
bpQK

i¼1m
γji
i ð1�miÞ1�γji

bpQK
i¼1m

γji
i ð1�miÞ1�γji þ ð1� bpÞQK

i¼1u
γji
i ð1� uiÞ1�γji

(2)

Step M – Maximization

bmi ¼
PN

j¼1bg jγ
j
iPN

j¼1bg j

bui ¼
PN

j¼1

�
1� bg j

�
γjiPN

j¼1

�
1� bg j

� (3)

bp¼
PN

j¼1bg j

N
(4)

To start the algorithm, it is necessary to provide a priori values for the
probabilities mi, ui, and the proportion bp. We set mi ¼ 0.95 and ui ¼ 0.20
for all attributes, except for sex, whose a priori probability uwas set to 0.5
(the probability that the sex of two different people coincide is approxi-
mately 0.5). These a priori probabilities can be set based on previous
studies or they can be guessed, the EM algorithm is not particularly sen-
sitive to starting values, however, it is important to set a priori m proba-
bilities higher than their corresponding u probabilities [16, 17]. For the a
priori probability bp, we divided the number of unique records in the
source with fewer records by the total pairs in the blocking.

We established as a tolerance criterion to determine the number of
iterations (t), that the maximum difference between estimated proba-
bilities of subsequent iterations did not exceed the value of 10�5, that is,
max f��mi;t � mi;t�1

��; ��ui;t � ui;t�1
��gh10�5. Once we had calculated the

similarity probabilities, we computed the weights for each attribute. If
the attribute i matches, ðγi ¼ 1Þ; we assigned the weight

wmatch;i ¼ log2

�
mi

ui

�
(5)

while if it does not match ðγi ¼ 0Þ we assigned the weight

wunmatch;i ¼ log2

�
1�mi

1� ui

�
(6)

The similarity score results from adding the weights assigned to all
the attributes that are compared.

score¼ log2ðRÞ¼
XK

i¼1
ðwmatch;i � γi þwunmatch;i �ð1� γiÞÞ (7)
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This score corresponds to the logarithm base 2 of the ratio R (Eq. (8))
under the assumption of conditional independence where γ is a vector of
comparison results on the attributes, Γ is the set of possible comparison
results, M is the set of pairs that are correct, U is the set of pairs that are
incorrect, and form a partition of the total pairs: M [ U ¼ N

R¼PðγεΓjrεMÞ
PðγεΓjrεUÞ (8)

2.6. Attributes

As already mentioned, the attributes used for linking were seven:
name, paternal surname, maternal surname, sex, year of birth, and entity
and municipality of residence codes. For the text variables, we applied
the Levenshtein similarity function [12] and classified an attribute as
coincident when it was equal or greater than 0.9. Additionally, we
applied the Dice bigram similarity function to the full concatenated name
with an extra special character at the beginning and the end of the text
string. Name, paternal surname, and maternal surname were each
considered concordant when the Dice similarity score was equal or
greater than 0.9. For year of birth, pairs with the same value or differing
by one year were considered concordant.
2.7. Unsupervised pair classification

We applied the proposed probabilistic linkage method to the set of
pairs filtered through a trigram-based blocking procedure. Using visual
support from a histogram of similarity scores and inspection of attribute
data from pairs in a region in which their classification status was more
difficult to establish, we selected two cutoff points for the similarity score
that resulted in three categories: 1) pairs classified as true 2) pairs that
required review 3) pairs classified as false. After clerical review, we
classified the pairs in the second category as true or false. The tasks of
setting up the unsupervised cutoffs and perform the clerical review were
performed by two of the authors without knowing the results of the su-
pervised classification.
2.8. Unsupervised classification performance assessment

Using the group of pairs whose true status is known (partition A–D,
Table 1), we assessed the performance of unsupervised classification in
terms of sensitivity (percentage of true pairs classified as pairs) and
positive predictive value (percentage of linked pairs that are correct
pairs). The percentage of pairs completeness achieved with the blocking
step represents the maximum value that sensitivity can reach.
2.9. Supervised pair classification

Using the set of pairs for which their true status is known, we selected
the similarity score cutoff that maximized the sum of sensitivity
and positive predictive value, resulting in a two-category classification of
the pairs.
2.10. Analysis in the validation group

Starting from the results of the supervised classification and the
performance of the unsupervised classification in the training group, we
analyzed misclassification errors and the selected cutoff points for clas-
sification into three categories. This analysis informed the decisions to
classify pairs in the validation group. Once the classification was carried
out, we assessed its performance in terms of sensitivity and positive
predictive value.
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2.11. Comparison of characteristics between the reference standard and
observations not in the reference standard

We compared the distribution of sex, state of residence marginaliza-
tion [18], and year of birth in the reference standard with their corre-
sponding distribution in the rest of observations from SAEH excluding
live discharges and from SEED excluding observations with social secu-
rity. These exclusions were performed to make distributions more clearly
comparable since SAEH covers population without social security and
includes both live and death discharges.
2.12. Implementation in SQL-server and Stata software

We performed all blocking procedures in SQL-Server 2012 [19] and
the EM algorithm based on the Fellegi-Sunter model was programmed in
Stata MP v.15 [8]. A code file for both programs is available as Supple-
mentary Material.

3. Results

3.1. Blocking

In the training group, the different blocking approaches applied to the
full name showed contrasting differences in their performance. Pairs
completeness achieved by Soundex coding was 94.58% with a
complexity reduction of 98.22%, while pairs completeness achieved by
the NYSIIS coding was 90.72% with a complexity reduction of 99.79%.
Pairs completeness and complexity reduction of the trigram blocking
depended on the cutoff point for the trigram similarity function
(Figure 1). According to these results, the blocking that minimized the
loss function (Eq. (1)) corresponded to the cutoff point of 0.825 for the
trigram similarity function, which reached 95.91% pairs completeness
and a complexity reduction of 99.9994%. Trigram blocking allowed to
achieve better results in terms of pairs completeness and complexity
reduction compared to blocking based on phonetic encodings. It is
important to note that when the total number of possible pairs is in the
millions, a seemingly small improvement in complexity reduction as a
percentage may correspond to a considerable drop in the size of the
number of pairs filtered.

For the blocking by year of birth, we obtained 46.7% pairs
completeness and 99.3916% complexity reduction. Meanwhile, blocking
using residence codes (entity þ municipality) achieved 84.62% pairs
completeness and 99.6583% complexity reduction. These results showed
that blocking on the full name using the trigram similarity function
presented the best performance in terms of pairs completeness and
complexity reduction. Although it is possible to filter pairs through the
unions of individual blockings, full name trigram blocking simulta-
neously achieved relatively high pairs completeness and substantially
reduced complexity.

In the validation sample, we achieved 95.76% pairs completeness and
99.9996% complexity reduction with the cutoff point selected for the
trigram similarity function of the full name in the training sample.
3.2. Linkage with the EM algorithm in the training group

The total number of pairs to be compared after blocking in the
training sample was 508,794. We observed 124 attribute similarity pat-
terns out of a total of 27 ¼ 128 possible patterns. The linkage algorithm
met the tolerance criterion in iteration 16. The attribute with the highest
m probability was state of residence, while the one with the lowest m
probability was year of birth (Table 2). We observed the highest u
probability for the attribute of sex and the lowest u probability for the
attribute of municipality of residence. The attributes that showed the
greatest capacity for discrimination were the state and municipality



Figure 1. Pairs completeness and complexity reduction performance of trigram blockings with different similarity thresholds in the training group. c: cutoff point of
the trigram similarity function.
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codes. It should be noted that these results followed a pairs filtering step
based on the full name. After obtaining the posterior m and u probabil-
ities, we calculated the weights for the similarity score (Eq. (7)).
3.3. Supervised binary classification in the training group

The optimized cutoff point for a supervised classification in two cat-
egories was score ¼ 7.90, with a sensitivity of 89.7% and a positive
predictive value of 99.1%.
3.4. Unsupervised classification in the training group

We classified pairs with a similarity score greater than or equal to
9.82 as matching, and pairs with a similarity score less than or equal to
2.79 as mismatched. We performed clerical review of pairs with a score
greater than 2.79 but less than 9.82. With this classification, we achieved
a sensitivity of 90.2% and a positive predictive value of 99.1%.

Figure 2 shows the sensitivity and positive predictive value depend-
ing on each cutoff point. The dashed reference lines mark the cutoff
points established in the unsupervised classification into three categories
(non-coinciding, potentially coincident, coincident) and the solid refer-
ence line indicates the binary supervised classification (mismatched,
matched).
Table 2. Similarity score weights, m and u probabilities, for each attribute after
applying the EM algorithm to the Fellegi-Sunter model in the training group.

Attribute Prior Posterior Weights

m u m u wmatch wunmatch

Name 0.95 0.20 0.909 0.361 1.33 -2.81

Surname (paternal) 0.95 0.20 0.984 0.492 1.00 -4.96

Surname (maternal) 0.95 0.20 0.959 0.338 1.51 -4.03

Year of birth 0.95 0.20 0.807 0.019 5.40 -2.35

Sex 0.95 0.50 0.956 0.854 0.16 -1.73

State 0.95 0.20 0.998 0.064 3.96 -9.15

Municipality 0.95 0.20 0.851 0.012 6.10 -2.73

Estimated through the EM algorithm applied to the Fellegi-Sunter model of
probabilistic linkage.
Prior p probability ¼ 0.112, posterior p probability ¼ 0.025.
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3.5. Applying the EM algorithm in the validation group

Once we applied the blocking, we obtained a total of 4,677,152 pairs
for comparison and observed 127 similarity patterns. The linkage algo-
rithm met the tolerance criterion at iteration 19. The probabilities m and
u were similar to those obtained in the training sample (Table 3).

3.6. Application of the cutoff point chosen for binary classification in the
training to the validation group

With the cutoff point of 7.90 we obtained from training for a binary
classification, we achieved a sensitivity of 89.86% and a predictive value
of 96.18% in the validation group.

3.7. Unsupervised classification in the validation group

We classified pairs with a similarity score greater than or equal
to 9.39 as matching, pairs with a similarity score less than or equal
to 1.88 as mismatched and performed clerical review of pairs with a
score greater than 1.88 but less than 9.39. With this classification
Figure 2. Sensitivity and positive predictive value in the training group and
cutoff points for classification.



Table 3. Probabilities m, u and weights for the attributes in the linkage of the
validation group.

Attribute Prior Posterior Weights

m u m u wmatch wunmatch

Name 0.95 0.20 0.869 0.353 1.30 -2.30

Surname (paternal) 0.95 0.20 0.975 0.481 1.02 -4.35

Surname (maternal) 0.95 0.20 0.936 0.319 1.55 -3.41

Year of birth 0.95 0.20 0.729 0.017 5.39 -1.86

Sex 0.95 0.50 0.945 0.859 0.14 -1.37

State 0.95 0.20 0.998 0.063 4.00 -9.27

Municipality 0.95 0.20 0.824 0.012 6.06 -2.49

Estimated through the EM algorithm applied to the Fellegi-Sunter model of
probabilistic linkage.
Prior p probability ¼ 0.051, posterior p probability ¼ 0.017.
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we achieved a sensitivity of 90.72% and a positive predictive value
of 97.10%.
3.8. Comparison of characteristics between the reference standard and the
rest of observations from SAEH excluding live discharges and SEED
excluding observations with social security

SAEH death discharges not included in the reference standard had a
higher percentage of males, a higher percentage living in states with high
or very high marginalization and higher values of year of birth compared
to the reference standard, whereas SEED observations without social
security and not included in the reference standard showed a slightly
higher percentage of males, a higher percentage living in states with high
or very high marginalization, and lower values of year of birth compared
to the reference standard (Table 4).

4. Discussion

In this paper we present the performance of different forms of
blocking and the implementation in Stata of the Fellegi-Sunter model to
probabilistically link individual records from SAEH and SEED, two health
information systems in Mexico.
Table 4. Distribution of sex, state of residence marginalization and year of birth
in the reference standard and the rest of observations from SAEH excluding live
discharges and SEED excluding observations with social security.

SAEH SEED

Reference
standard

Other death
discharges

Reference
standard

Other without
social security

Observations 44762 10800 44762 285714

Sex

Male 52.9 60.3 54.5 57.5

Female 47.1 39.7 45.3 42.2

Other response 0.0 0.0 0.2 0.2

State marginalization

Very low 13.8 17.5 13.8 12.2

Low 36.4 31.2 35.8 27.8

Middle 20.2 14.2 20.3 16.7

High 20.7 26.4 21.0 28.1

Very high 9.0 10.7 9.1 15.1

Year of birth

Mean 1955 1961 1954 1949

Std. deviation 20.8 23.2 20.7 22.2

25th percentile 1939 1942 1938 1931

Median 1953 1958 1952 1944

75th percentile 1968 1977 1967 1963
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The linkage of records from different systems is a key procedure that
allows researchers to perform longitudinal statistical and epidemiolog-
ical analyses and uncover subpopulations with special health conditions
and comorbidities [2, 3, 4]. For instance, record linkage has been
recently used to compute heritability estimates for 500 disease pheno-
types. In this application, emergency contact data was mined, and the
identified relationships were shown to be consistent with genetically
derived relatedness [20].

However, record linkage implementation presents technical chal-
lenges, such as handling large databases and the presence of variations
and errors in capturing ID information. One of the main difficulties in
record linking is the large number of possible comparisons between
candidate pairs. One of the strategies to reduce the number of such pairs
to be compared is the use of filtering techniques (blocking) that limit the
comparisons to a subset of the pairs that present similarity in an attribute
or group of attributes. We applied trigram-based blocking using the full
name, which is more demanding in terms of the number of operations
and time consuming compared to other alternatives based on phonetic
similarities but had much better performance in terms of coverage
(~96%) and complexity reduction (99.9994%).
4.1. Comparison with other methodologies

The linking of records with two sources of information can be seen as
a classification problem: separating the pairs that belong to the same
entity (e.g., subject, health center, etc.) from the rest of the pairs. The
different alternatives of this analysis can be classified into supervised and
unsupervised methods [21]. Supervised techniques require knowledge of
the true status of a subset of pairs to train the model, after which the
results can be applied to additional records. A disadvantage of this type of
methodology is that the parameters of the models are specific to the
training sample. Even when the attributes are the same, the model pa-
rameters could be different in other databases or for other populations. In
contrast, unsupervised techniques, such as the one used in this work, do
not require a gold standard or the correct state of the pairs for parameter
estimation. Although the parameters of the Fellegi-Sunter model are
estimated in an unsupervised way, if a reference standard is available in a
subset of the data, it is possible to optimize the cutoff point for pair
classification.

In this work, we use a reference standard to estimate the classification
performance in terms of sensitivity and positive predictive value 1) when
a cutoff point is optimized in the training sample and then applied to the
validation sample 2) without establishing cutoff points informed by the
reference standard. In the first case, we reached a sensitivity of 89.86%
and a positive predictive value of 96.18% in the validation group. It
should be noted that this type of classification is automatic, as pairs are
assigned to matched or unmatched status without performing a clerical
review of potential pairs. On the other hand, in the second case, we
established an intermediate category of potential pairs and reviewed one
by one. This achieved a sensitivity and positive predictive value about 1
percentage point higher compared to automatic classification (90.72%
and 97.10%, respectively). This percentage point, in terms of number of
pairs, represents a considerable amount when working with large data-
bases. Therefore, depending on the application, the cost associated with
reviewing the intermediate category of pairs, might be justified. Another
advantage of reviewing a category of potential pairs, is the possibility of
simultaneously improving sensitivity and positive predictive value; with
an automatic binary classification there is a trade-off between sensitivity
and positive predictive value when the classification cutoff point is
changed.

Other record linkage methods have been developed apart from the
probabilistic approach based on the Fellegi-Sunter model. These include
a sorted-neighborhood approach, Bayesian methods, distance-based
techniques, methodologies from machine-learning and a double-
embedding scheme [14, 22].
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4.2. Considerations for choosing the cutoff point

The selection of the similarity cutoff depends on the relative impor-
tance given to sensitivity and positive predictive value. Lowering the
cutoff will result in higher sensitivity (more true pairs will be captured),
but at the cost of classifying more false pairs as correct. On the other
hand, if the cutoff point is raised, a higher positive predictive value will
be obtained with a decrease in sensitivity. For example, the deterministic
classification method, by requiring perfect matching on all attributes,
often results in a very high positive predictive value along with an
important reduction in sensitivity. If the purpose of the linkage is an
epidemiological analysis by estimating statistical models for the pop-
ulations of interest, a probabilistic linkage may be the most appropriate.
On the other hand, if the application requires using information at the
individual level, it is desirable to obtain a very high positive predictive
value; in this case, a deterministic linkage might be recommended [23].
It is also possible to incorporate misclassification costs for cutoff opti-
mization [24, 25].
4.3. Strengths and limitations

The implementation of the EM algorithm for probabilistic linkage in
Stata has the advantage that the maximum number of pairs to compare is
only limited by the memory available in the computer. Comparisons of
the different forms of blocking allowed us to identify the most efficient
alternatives in terms of reducing complexity while simultaneously
maintaining high pairs completeness.

The availability of a reference standard allowed us to assess the
performance of the linkage algorithm in a subset of data. However, re-
cords not included in the reference standard showed a higher percentage
of observations from states with high and very high state marginaliza-
tion, those records may present a higher level of linkage difficulty if data
quality is negatively related with state marginalization.

Sometimes only a limited set of records in both data sources contain a
standardized identifier; in such situations, the cutoff point could be
optimized in these sub-samples to inform the process of parameter esti-
mation and selection of similarity score cutoff points when using all the
data. If the estimated probabilities m and u are similar to those obtained
with the sub-samples with standardized identifiers, it might be useful to
consider the optimized cutoff point together with the analysis of the
distribution of the linkage similarity score to select cutoff points.

The importance of the database preparation processes before linking
should also be considered. In this paper, we document the performance of
the linking method after applying cleanup and standardization rules for
text in the Spanish language. As previously mentioned, we obtained su-
perior performance with trigram-based blocking compared to phonetic
code-based blocking. It should be noted that these phonetic codes are not
specifically designed for Spanish, although their use in practice has been
consolidated over time. Edit distance and q-grams can also be applied
with other languages or even with alpha-numeric variables.
4.4. Ethical considerations

Because of record linking, characteristics, diagnoses, and some other
data about an individual can be identified. In this sense, the link itself has
additional ethical implications to those considered in the management of
information systems separately. Whenever these methods are applied, it
should be disclosed that confidentiality of individual information will be
preserved, that research will follow high-quality guidelines, and that the
risks are minimal [23]. Additionally, researchers must work in strict
adherence to the laws and legal regulations that govern each country
[26]. Personal information should exclusively be used for the linking
process, and the records should be anonymized once the linked database
has been generated.
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4.5. Applications and future works

Some extensions to the Fellegi-Sunter linkage model have been
documented in the literature [27, 28]. In future works, we propose to
apply an extension to the model for fractional comparison results and to
apply the model under a Bayesian approach, which will be especially
useful when linkages are routinely applied with the same information
systems. The construction of a catalog of names and surnames with all
their possible spelling variants in Mexican Spanish is also proposed to
map these to a generic form before the application of the linking
algorithm.

5. Conclusions

The algorithm for the probabilistic linkage of records based on the
Fellegi-Sunter methodology achieved a good performance in terms of
sensitivity and positive predictive value. It could be used to build
administrative cohorts for the epidemiological analysis of populations
using the records available in the health information systems.
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