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A B S T R A C T

Background: There is limited evidence regarding long-term effects of prenatal docosahexaenoic acid (DHA) supplementation on offspring
cardiometabolic health (CMH). Inconsistent results may be attributable to variants of fatty acid desaturase (FADS) genes.
Objective: We aimed to evaluate the effect of prenatal DHA supplementation on offspring CMH and investigate effect modification by maternal FADS2
single nucleotide polymorphism (SNP) rs174602.
Methods: We used follow-up data from a double-blind, randomized controlled trial in Mexico in which pregnant females received 400 mg/d of algal
DHA or placebo from midgestation until delivery. The study sample included 314 offspring with data at age 11 y and maternal FADS genetic data (DHA:
n ¼ 160; Placebo: n ¼ 154). We derived a Metabolic Syndrome (MetS) score from body mass index, HDL, triglycerides, fasting glucose concentrations,
and systolic blood pressure. Generalized linear models were used to evaluate the effect of the intervention on offspring MetS score and test interactions
between treatment group and genotype, adjusting for maternal, offspring, and household factors.
Results: Offspring MetS score did not differ significantly by treatment group. We observed evidence of effect modification by maternal SNP rs174602
(P ¼ 0.001); offspring of maternal TT genotype who received DHA had lower MetS score relative to the placebo group (DHA (mean � standard error of
the mean (SEM)): -0.21 � 0.11, n ¼ 21; Placebo: 0.05 � 0.11, n ¼ 23; Δ¼ -0.26 (95% CI: -0.55, 0.04), P ¼ 0.09); among CC maternal genotype carriers,
offspring of mothers who received DHA had higher MetS score (0.18 � 0.06, n ¼ 62) relative to the placebo group (-0.05 � 0.06, n ¼ 65, Δ¼0.24 (0.06,
0.41), P < 0.01).
Conclusion: The effect of prenatal DHA supplementation on offspring MetS score differed by maternal FADS SNP rs174602. These findings further
support incorporating genetic analysis of FADS polymorphisms in DHA supplementation trials.
Clinical trial details: This trial was registered at clinicaltrials.gov as NCT00646360.
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Introduction

Nutritional exposures may have long-term implications for
offspring metabolic health, including risk of cardiovascular disease and
type II diabetes [1–4]. DHA is an n-3 long-chain PUFA (LC-PUFA)
Abbreviations: AA, arachidonic acid; CMH, cardiometabolic health; FADS, fatty acid de
INSP, Mexican National Public Health Institute; LC-PUFA, long-chain PUFA; LD, linkage d
Component; PCA, Principal Components Analysis; POSGRAD, Prenatal Omega-3 Supplem
Systolic Blood Pressure; SNP, single nucleotide polymorphism; SES, Socioeconomic Status
* Corresponding author.
E-mail address: ramakr@emory.edu (U. Ramakrishnan).

https://doi.org/10.1016/j.ajcnut.2023.10.005
Received 29 March 2023; Received in revised form 20 September 2023; Accepted 11 Octo
0002-9165/© 2023 Published by Elsevier Inc. on behalf of American Society for Nutrition.
that typically accumulates during the second half of pregnancy to
support optimal fetal DHA tissue deposition, development and immune
function [5]. Animal models and epidemiological studies suggest
that alterations in the prenatal DHA supply may also influence
long-term offspring cardiometabolic risk via altered cell and organ
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development, gene expression, and development of neuroendocrine
signals [1, 4, 6, 7]. For example, studies in rat and mouse models have
shown that prenatal n-3 LC-PUFA supplementation results in lower
adiposity, insulin resistance, and dyslipidemia among offspring [8–11].

In humans, observational studies report associations of highermaternal
n-3 LC-PUFA status during pregnancy with lower adiposity, dyslipide-
mia, and leptin concentrations among offspring in early andmidchildhood
[12, 13]. Additional evidence suggests that, especially among females
with overweight or obesity, mother-offspring dyads may benefit from
prenatal DHA supplementation via improvements in maternal insulin
sensitivity, circulating lipids, and placental inflammation, thus reducing
fetal overnutrition and adiposity [14]. However, systematic reviews of
results from randomized controlled trials (RCT) report inconsistent effects
of prenatal DHA supplementation on offspring cardiometabolic health
(CMH) outcomes [6, 15–18]. Although these inconsistencies may be
attributable to differences in the dose, type, and timing of supplementation
during pregnancy [19, 20], variants of fatty acid desaturase (FADS) genes
that modulate the conversion of n–3 and n–6 fatty acids into LC-PUFAs
may also contribute to this heterogeneity [5].

Tissue LC-PUFA concentrations are determined by both dietary
intake of n-6 and n-3 LC-PUFAs and endogenous formation from
dietary PUFA precursors, which occurs through a series of consecutive
desaturation and elongation steps. The rate-limiting desaturase steps
are mediated by Δ-6 and Δ-5 desaturase enzymes encoded in the FADS
gene cluster (FADS1, FADS2, FADS3) [5]. Multiple variants in FADS
genes have been associated with lower LC-PUFA concentrations,
indicating reduced conversion of dietary precursors [5, 21]. Although a
few observational studies suggest that maternal FADS genotype in-
fluences offspring LC-PUFA status and lipid profiles, to our knowl-
edge, this association has not been investigated in the context of an
intervention trial [22].

To address these research gaps, we leveraged data from a large
prenatal DHA supplementation RCT in Mexico, in which pregnant
females received either 400 mg algal DHA (treatment) or placebo daily
from midpregnancy through delivery. We previously reported that
maternal FADS2 SNP rs174602 modified the effect of prenatal DHA
supplementation on offspring birth weight [23], metabolome at age 3
mo [24], and cognition at age 5 y [25]. The objective of this study is to
evaluate the effect of prenatal DHA supplementation on offspring
CMH at age 11 y and assess whether it differed by variations in
maternal FADS SNP rs174602.
Methods

Participants and study design
This study included children of pregnant females who participated

in the Prenatal Omega-3 fatty acid Supplementation and Child
Growth and Development (POSGRAD) trial in Cuernavaca, Mexico
(NCT00646360). A detailed description of the trial design and pro-
tocol has been published previously [26]. Briefly, pregnant females
were recruited at 18 to 22 wk gestation at the Mexican Social Security
Institute (IMSS) and were eligible for inclusion if they were 18 to 35 y
old, planned to deliver at the IMSS hospital, breastfeed for at least 3
mo, and continue living in the area for � 2 y after delivery. Exclusion
criteria included high-risk pregnancies, lipid metabolism or
absorption disorders, regular intake of fish oil or DHA supplements,
or chronic use of certain medications. Once eligibility was confirmed,
participants were contacted and provided with a thorough explanation
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of the study protocol, and written informed consent was obtained. Of
1762 eligible pregnant females, 1094 were randomly assigned to
receive 2 capsules containing either 200 mg algal DHA per capsule
(treatment) or a corn/soy oil blend (placebo) daily through delivery;
the fatty acid composition of the supplements has been previously
published [24]. Block randomization was used to randomly assign
study participants into groups of equal sample size using a block size
of 8. Assignment codes were placed in sealed envelopes at the
beginning of the study and were held in a sealed location by a faculty
member at Emory University who was not involved with the study.
Enrollment took place from February 2005 to March 2007, and the
last child was born in July 2007. All study participants and members
of the study team were blinded to treatment allocations throughout the
intervention period of the study. Data were unblinded for the
analytical study team after the last infant was born and reached 6 mo
of age. The participants and fieldworkers remain blinded to the
intervention, as the study is still ongoing for follow-up. Due to
budgetary limitations, venous blood samples were collected in a
subsample of 485 children who were contacted and agreed to
participate in the 11-y follow-up study from 2016 to 2018.

The study was conducted according to the guidelines of the
Declaration of Helsinki. The Emory University Institutional Review
Board and the Mexican National Public Health Institute (INSP) ethics
committee approved all procedures involving human subjects.
Informed consent was obtained from all pregnant females at study
enrollment. At the 11-y follow-up visit, mothers provided written
informed consent, and children provided written assent.

Maternal genotype data
Fasting venous blood samples were obtained from all pregnant

females at recruitment. Plasma, buffy coat, and red blood cells were
separated and stored at INSP laboratories at �80�C until buffy coats
were transported to the Helmholtz Center, Munich, Germany. The
genetic analysis was carried out during 2012 and 2013 for those who
provided consent to genotyping (n ¼ 720), using methods that have
been previously described [23]. The resulting data sets containing
information on 15 FADS1, FADS2, and FADS3 SNPs, selected based on
biological evidence of an effect on LC-PUFA metabolism [27–31],
were sent to Emory University via encrypted files. Key SNPs were
selected on the basis of previous associations with cardiometabolic
health in the literature (rs174548, rs174556, rs174570, rs174575,
rs174576, rs174579, rs174602) [27, 28, 30, 31]. Maternal FADS2 SNP
rs174602 was selected as the focus of this study based on previous
evidence of effect modification on offspring birth weight, metabolome
at 3 mo, and cognition at 5 y within the POSGRAD trial [23–25]. Allele
frequencies were calculated, and Hardy Weinberg Equilibrium (HWE)
was tested with Fisher’s exact test using the R ‘genetics’ package.

Follow-up study of children at 11 y
At age 11 y, body weight (kg) and height (cm) were collected in

triplicate by trained personnel following standard procedures [32].
Children were weighed wearing light clothing with a portable
electronic pediatric scale (Tanita model 1582) with a precision of 100 g,
which was calibrated daily with a known reference weight. Height was
measured using a stadiometer with a precision of 0.1 cm. Average
values of all 3 measurements were calculated. We calculated
BMI-for-age z-scores according to the 2007 WHO Growth Reference
Standards using the ‘z scorer’ R package [33]. Blood pressure (mmHg)



S.T. Wimalasena et al. The American Journal of Clinical Nutrition 118 (2023) 1123–1132
was measured using a digital device (OMRON model
HEM-711ACINT), which has been validated for use in children and
adolescents. Blood pressure was taken when the child was at rest (> 5
min after the child arrived at the study visit). In each arm, 4 mea-
surements were made with 2-min intervals; the first measurement was
discarded, and the subsequent 3 were averaged [34].

Outcome assessment: cardiometabolic markers
Venous blood samples were obtained from children after a 12-h

fasting period (verified by documenting the approximate time that
food was last consumed) and centrifuged. Aliquots of serum were
frozen in liquid nitrogen and stored at �80�C until further analysis at
the National Institute of Medical Sciences and Nutrition Salvador
Zubir�an in Mexico. HDL cholesterol, triglyceride, and glucose con-
centrations were assessed using the Beckman Coulter SYNCHRON
CX 5 Delta automated kit and expressed in mg/dL. Cardiometabolic
risk factor thresholds were defined as follows: triglycerides �150 mg/
dL, HDL <40 mg/dL, systolic blood pressure (SBP) � 90th percentile
for sex and height, and fasting glucose �100 mg/dL [35, 36].

Derivation of continuous MetS score
To operationalize cardiometabolic health and reduce multiple

testing, we used principal components analysis (PCA) to calculate a
continuous MetS score (primary outcome) using SBP, BMI-z, HDL,
triglycerides, and glucose concentration values [37]. We used BMI-z
instead of waist circumference because it has greater reliability and
has been used in other similar studies [38, 39]. We log-transformed
triglycerides and glucose concentration values and used the inverse
of HDL when standardizing, so a higher factor loading score would
have a similar interpretation to other measures in the model. Top
principal components (PCs) were identified visually using scree plots
and quantitatively using the Kaiser criterion (eigenvalues > 1). Sub-
sequently, the score was calculated as the sum of the top 2 components,
weighted by variance explained. The score can be interpreted as a
z-score, with higher scores representing increased cardiometabolic risk.
PCAwas performed using the ‘FactoMineR’ R package [40]. Given the
observed sex differences in cardiometabolic health measures, we per-
formed a sensitivity analysis comparing sex-specific and overall MetS
scores; their correlation coefficient was 0.97, so we used the overall
score in subsequent analyses.

Covariates
Data on maternal, offspring, and household factors were available

to further characterize the study population. Household SES at
enrollment was calculated with the use of PCA on a list of assets
collected through interviews [26]. Maternal BMI at enrollment was
assessed based on weight and height measurements that were obtained
using standard procedures. Maternal dietary intake at study enrollment
was also assessed using a 110-item food-frequency questionnaire that
was specifically designed to include important PUFA sources [41].
Data on infant feeding practices at 3 mo of age were obtained by
maternal interview and used to categorize infant feeding practices ac-
cording to the WHO classification [42, 43]. Dietary intake of children
at 11 y was assessed via multiple-pass 24-h dietary recall developed for
Mexican populations [44]. Trained personnel administered the diet
recall tool to the child’s primary caregiver (in presence of the child).
Nutrient and energy estimations were obtained using the 2012 and
2016 Mexican Food Database (BAM in Spanish): Compilation of the
Frequently Consumed Foods in the Country, which is maintained by
INSP [45]. Sedentary time was estimated using a self-reported physical
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activity and inactivity questionnaire that was developed for and vali-
dated among children ages 10 to 14 y in Mexico [46]. Sexual matu-
ration was assessed by proxy using testosterone concentrations for
males and age at attainment of menarche for females via a self-reported
questionnaire.

Statistical analysis
Normality of data was assessed using histograms and quantile-

quantile plots, and residual plots were used to check model assump-
tions. We calculated means and standard deviations for maternal and
offspring characteristics at trial enrollment and birth and assessed
differences by treatment group and maternal genotype using t-tests,
ANOVA, and Wilcoxon rank-sum tests as appropriate. We compared
these characteristics between those included in the analytic sample and
the rest of the birth cohort, and variables that differed were considered
for inclusion in models as covariates.

We used multivariable generalized linear models (GLMs) to assess
the effect of prenatal DHA supplementation on offspring MetS scores
and test interactions between maternal treatment group and genotype
using 5 different models: 1) unadjusted model; 2) adjusted for house-
hold SES score, maternal age (y), parity (number of live births), BMI
(kg/m2), and offspring sex and age at measurement (d); 3) model 2
additionally adjusted for birth weight (g) and gestational age at birth
(wk); 4) model 3 additionally adjusted for energy intake (kcal/d) and
omega-3 fatty acid intake (g/d); and 5) model 4 additionally adjusted
for monounsaturated fat (MUFA) (g/d) and saturated fat intake (g/d).
We used multiple imputations to account for missing values of cova-
riates (diet [n ¼ 85, 27.1%], sedentary time [n ¼ 26, 8.3%], sexual
maturation [testosterone concentrations in males: n ¼ 101, 58.4%;
attainment of menarche in females: n ¼ 1, 0.7%], and infant feeding
practices [n ¼ 30, 9.6%] and duration [n ¼ 2, 0.6%]). We used the R
‘mice’ package to generate 20 imputed datasets using fully conditional
specification with 50 iterations, conducted GLMs for each of the 20
models, and pooled the estimates [47]. Inclusion of covariates specified
in models 3, 4, and 5 did not alter estimates; therefore, we report all
findings adjusted for the covariates specified in model 2. All statistical
analyses were performed using R version 4.0.4 (R Foundation for
Statistical Computing, Vienna, Austria). Statistical significance was
held at P < 0.05. We tested 6 different outcomes (MetS score and 5
components included in MetS score) and used the Bonferroni correc-
tion to adjust for multiple testing (P < 0.008).

Results

The analytic sample included all children with complete data on
maternal genotype and cardiometabolic risk factors (BMI-z, HDL,
triglycerides, glucose, and SBP) at age 11 y (n ¼ 314) (Figure 1).
Maternal and offspring characteristics at trial enrollment and birth were
balanced by treatment group and maternal genotype (Table 1). Mean
maternal age and BMI at enrollment were 26.2 � 4.7 y and 26.0 � 4.2
kg/m2, respectively. Median maternal dietary intake of DHAwas very
low (median [IQR]: 56 [40–105] mg/d), combined with a dietary n-6:n-
3 ratio of 12:1. Mothers of children in the analytic sample tended to be
older and have a higher BMI and higher SES score at trial enrollment
relative to those lost to follow-up or missing data (Supplemental
Table 1). Lifestyle factors of children at age 11 y by treatment group and
maternal genotype are presented in Table 2; children whose mothers
received prenatal DHA tended to have higher intakes of poly-
unsaturated fatty acids, including total omega-3 and omega-6 intake,
relative to children whose mothers received placebo (P < 0.05).



FIGURE 1. Procedures of study sample selection. MetS, metabolic syndrome; FADS, fatty acid desaturase
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Maternal and offspring characteristics at study enrollment and birth,
and offspring lifestyle factors at age 11 y were similar when stratified by
both prenatal treatment group and maternal genotype (Supplemental
Table 2).

Genotype distribution of maternal SNP rs174602
Within this sample, the minor allele frequency for maternal SNP

rs174602 was 0.37; 44 mothers (14%) were homozygous carriers of the
minor T allele, 143 (46%) were heterozygous carriers (TC), and 127
(40%) were homozygous carriers of the major C allele. There were no
significant differences in genotype distribution by treatment group, and
there were no HWE violations observed (P ¼ 0.72).

Cardiometabolic health of children at age 11 y
At age 11 y, 42% of the children had BMI z-score> 1 SD, and 39%

had � 1 cardiometabolic risk factor (HDL �40 mg/dL, triglycerides
�150 mg/dl, fasting glucose �100 mg/dL, SBP �90th percentile). The
most frequently observed cardiometabolic risk factor was low HDL
(30%), followed by high triglycerides concentration (16%). Derivation
of the MetS score via PCA showed that the top 2 PCs collectively
explained 56% of the variance in the measured data (Supplemental
Figure 1A). Triglycerides, BMI-z, and HDL concentration contributed
to the first PC (35.0% variance explained), whereas SBP and fasting
glucose concentration contributed to the second PC (20.7% variance
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explained). The distribution of the MetS score in the study population
is shown in Supplemental Figure 1B.

Impact of prenatal DHA supplementation on offspring
MetS score

Differences in MetS components and offspring MetS score by
prenatal treatment group and maternal genotype are shown in Table 3.
Intent to treat analysis showed no differences by treatment group for the
MetS components (all P> 0.05) or MetS score at 11 y (Δ¼ 0.02, 95%
confidence interval [CI]: -0.09, 0.13). We observed evidence of effect
modification by maternal SNP rs174602 (P ¼ 0.001) (Figure 2).
Offspring of homozygous minor T allele carriers who received prenatal
DHA had lower MetS score relative to the placebo group (DHA [mean
� SEM]: -0.21 � 0.11, n ¼ 21; Placebo: 0.05 � 0.11; Δ¼ -0.26 [95%
CI: -0.55, 0.04], n¼ 23, P¼ 0.09). Among homozygous major C allele
carriers, offspring of mothers who received prenatal DHA had higher
MetS score (0.18 � 0.06, n ¼ 62) relative to offspring whose mothers
received placebo (-0.05 � 0.06, n ¼ 65, Δ¼0.24 [0.06, 0.41], P <

0.01). Individual cardiometabolic risk factors, stratified by both
maternal genotype and treatment group, are shown in Supplemental
Table 3. Although we observed similar trends with individual MetS
components, the results were not statistically significant after adjust-
ment for multiple testing (Figure 3). Finally, we evaluated 3-way a
priori interactions with maternal BMI at study enrollment and offspring



TABLE 1
Maternal baseline characteristics and offspring characteristics at birth, stratified by treatment group and maternal genotype of SNP rs174602.1

Treatment group Maternal Genotype of SNP rs174602

Placebo DHA CC TC TT
N ¼ 154 N ¼ 160 N ¼ 127 N ¼ 143 N ¼ 44

Maternal factors, enrollment
Age, y 26.6 (4.61) 27.4 (5.18) 27.0 (4.81) 27.2 (5.01) 26.8 (5.02)
BMI, kg/m2 26.3 (4.10) 26.6 (4.13) 26.3 (4.12) 26.4 (3.92) 27.1 (4.65)
Height, cm 156 (5.54) 155 (5.57) 155 (5.66) 155 (5.46) 157 (5.54)
First pregnancy, % 53 (34.4%) 45 (28.1%) 37 (29.1%) 50 (35.0%) 11 (25.0%)
SES Score2 0.13 (1.05) 0.13 (0.89) 0.01 (1.03) 0.13 (0.94) 0.46 (0.81)
Schooling, y 12.3 (3.39) 11.9 (3.45) 11.6 (3.56) 12.3 (3.40) 12.6 (2.96)

Dietary intake at enrollment, g/d
ALA 1.76 (1.00) 1.79 (1.08) 1.76 (1.04) 1.80 (1.00) 1.73 (1.18)
DHA 0.08 (0.07) 0.08 (0.08) 0.08 (0.08) 0.08 (0.06) 0.10 (0.11)
LA 19.3 (7.76) 19.7 (8.64) 19.4 (7.78) 19.7 (7.79) 19.2 (10.6)
EPA 0.03 (0.04) 0.03 (0.04) 0.03 (0.04) 0.03 (0.03) 0.04 (0.06)
AA 0.15 (0.07) 0.16 (0.09) 0.15 (0.06) 0.16 (0.09) 0.15 (0.06)
Compliance to intervention, % 95.0 (5.00) 95.7 (4.99) 95.1 (5.55) 95.8 (4.53) 94.6 (4.76)
Offspring factors, birth

Sex
Male 81 (52.6%) 93 (58.1%) 69 (54.3%) 80 (55.9%) 25 (56.8%)
Female 73 (47.4%) 67 (41.9%) 58 (45.7%) 63 (44.1%) 19 (43.2%)
Birth weight, g 3220 (490) 3230 (449) 3229 (532) 3220 (440) 3231 (367)
Gestational age, wk 39.0 (1.66) 39.1 (1.91) 38.8 (1.97) 39.1 (1.70) 39.4 (1.44)

Infant feeding practices, 3 mo, %
Exclusively fed human milk 23 (16.2%) 17 (12.0%) 18 (15.8%) 15 (11.6%) 7 (17.1%)
Predominantly fed human milk 20 (14.1%) 15 (10.6%) 11 (9.65%) 17 (13.2%) 7 (17.1%)
Partially fed human milk 75 (52.8%) 80 (56.3%) 59 (51.8%) 78 (60.5%) 18 (43.9%)
Not fed human milk 24 (16.9%) 30 (21.1%) 26 (22.8%) 19 (14.7%) 9 (22.0%)
Duration of human milk feeding, mo 9.71 (7.96) 8.84 (7.65) 8.15 (6.86) 10.3 (8.56) 9.21 (7.53)

SES, socioeconomic status score; ALA, Alpha-Linolenic Acid; LA, Linoleic Acid; AA, Arachidonic Acid.
1 Chi-square tests, t-tests, and ANOVA were used to test differences between groups. No differences by treatment group were observed. Values presented are

mean (SD) unless otherwise stated.
2 Differs by maternal genotype (P < 0.05).
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sex but did not find any evidence of further effect modification
(G�BMI interaction P value ¼ 0.24, G�sex interaction P value ¼
0.28).

Discussion

In this follow-up study of mother-offspring dyads from Mexico, we
found no main effect of prenatal DHA supplementation on offspring
cardiometabolic health at age 11 y, but there were differences by var-
iants of maternal FADS2 SNP rs174602. Offspring of homozygous
minor allele (TT) carriers who received prenatal DHA had lower MetS
scores relative to the placebo group, whereas offspring of homozygous
major allele (CC) carriers who received DHA had higher MetS scores
relative to offspring whose mothers received placebo. These explor-
atory findings suggest that prenatal DHA supplementation may have
differential effects on a child’s long-term cardiometabolic risk based on
their mother’s genotype.

The lack of main effects of the intervention is similar to the findings
from the few studies that have evaluated the long-term effect of pre-
natal n-3 LC-PUFA supplementation on offspring metabolic health;
Rytter et al. found no significant differences by treatment group in
blood pressure or lipids in a Danish population at age 19 y, but the
sample sizes were small (n¼ 180 for blood pressure outcomes, n¼ 243
for adiposity-related outcomes) [48, 49]. When the analysis was
restricted to mothers with low fish intake, however, children born to
mothers who received fish oil trended toward better lipid profiles. A
prenatal DHA RCT that was conducted in the United States among 171
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mothers and their offspring also did not find evidence of a main
intervention effect but observed a statistically significant interaction
between prenatal DHA supplementation and child weight status for
SBP and DBP from 4 to 6 y of age and higher fat free mass at age 5 y
[50]. A previous study within the POSGRAD cohort also did not find
any differences by treatment group in nonfasting serum lipid and
glucose concentrations at age 4 y [51]. Some evidence suggests that
differences in cardiometabolic risk because of metabolic programming
may become more apparent later in childhood, near the onset of pu-
berty. One observational study reported associations of cord blood
LC-PUFA composition with child BMI at 2 and 10 y, but not 6 y,
highlighting the importance of age of outcome assessment [19].
However, within our study, results were still null at age 11 y.

Our results provide additional support that the differences in the ge-
netic makeup of individuals may partially explain null results observed
across prenatal DHA supplementation RCTs. Here, we showed that the
effect of the intervention on the offspring MetS score at 11 y differed by
maternalFADS2SNP rs174602, located at an intron/exon boundary of the
FADS2 gene. FADS2 encodes for the Δ-5 desaturase enzyme that regu-
lates the conversion of 20:3n-6 to 20:4n-6 (Arachidonic acid [AA]) and
20:4n-3 to 20:5n-3 (Eicosapentaenoic acid). Pregnancy is a complex
period characterized by necessary metabolic adaptations, including al-
terations in lipid and glucosemetabolism, to ensure an adequate supply of
nutrients, including DHA, to the mother and growing fetus [52]. During
this critical period with heightened nutrient requirements, individuals
with genotypes associated with lower endogenous conversion to DHA
may be at greater risk for DHA deficiency and subsequently benefit more



TABLE 2
Offspring characteristics at 11 y follow-up, stratified by treatment group and maternal genotype of SNP rs174602.1

Prenatal treatment group Maternal Genotype of SNP rs174602

Placebo N ¼ 154 DHA N ¼ 160 CC N ¼ 127 TC N ¼ 143 TT N ¼ 44

Dietary intake2

Energy intake (kcal/d) 1904 (595) 2064 (746) 1999 (709) 2216 (660) 2216 (660)
Cholesterol (g/d) 246 (183) 300 (219) 276 (201) 328 (235) 328 (235)
Lipids (g/d) 70.2 (33.8) 78.3 (35.7) 75.3 (35.0) 85.2 (42.0) 85.2 (42.0)
Saturated fat (g/d)3 27.5 (14.2) 30.6 (17.7) 28.8 (15.3) 35.8 (18.4) 35.8 (18.4)
Monounsaturated fat (g/d)3 23.3 (12.8) 26.1 (12.9) 24.8 (12.7) 30.0 (16.9) 30.0 (16.9)
Polyunsaturated fat (g/d)4 13.6 (8.21) 16.2 (9.55) 14.9 (9.06) 16.3 (9.03) 16.3 (9.03)
Total omega-3 intake (g/d)4 0.71 (0.65) 1.09 (1.39) 0.88 (1.08) 0.80 (0.67) 0.80 (0.67)
Total omega-6 intake (g/d)4 5.32 (4.67) 7.34 (7.73) 6.71 (7.49) 6.12 (4.33) 6.12 (4.33)
Total sedentary time, hours/d 4.82 (2.21) 4.75 (2.06) 4.83 (2.05) 5.03 (2.31) 5.03 (2.31)

Maturation
Females: attained menarche, n (%) 13 (8.5%) 11 (6.9%) 12 (8.39%) 3 (6.82%) 3 (6.82%)
Testosterone concentrations (pg/mL) 1.55 (0.84) 1.55 (0.72) 1.44 (0.77) 1.38 (0.65) 1.38 (0.65)
Age at examination, y 11.12 (0.20) 11.12 (0.17) 11.13 (0.18) 11.14 (0.16) 11.14 (0.16)

1 Chi-square tests, t-tests, and ANOVA were used to test differences between groups. Values presented are mean (SD) unless otherwise stated.
2 Dietary data only available for 229 individuals at age 11 y.
3 Differs by maternal genotype (P < 0.05).
4 Differs by maternal prenatal treatment group (P < 0.05).

S.T. Wimalasena et al. The American Journal of Clinical Nutrition 118 (2023) 1123–1132
from supplementation with preformed DHA. One RCT in the United
States showed that only among individuals with FADS SNPs associated
with lower conversion of precursors (i.e., had minor alleles for FADS
SNPs), prenatal DHA supplementation increased DHA concentrations
and reduced AA:DHA ratios at delivery. These findings suggested a se-
lective benefit of supplementation among carriers of variants for some
FADS SNPs [53]. A recent birth cohort study in China also reported
significant interaction between DHA supplementation and maternal SNP
rs174602 on DHA concentrations in colostrum [54]. Additionally, pre-
vious studies in European populations have shown that the CC genotype
for SNP rs174602 is associated with lower Δ-5 desaturase activity [55].

We have also previously reported from the POSGRAD study that
children born to TT carriers who received prenatal DHA had higher
birthweight relative to those who received placebo, while no dif-
ferences were observed among CC carriers (23). The fatty acid
analysis performed in a subset of the study population (n ¼ 140)
showed that the minor T allele for SNP rs174602 was inversely
associated with maternal plasma DHA concentrations at study
enrollment. This suggests that these individuals were at greater risk
of DHA deficiency, especially within the context of a diet high in n-
6 fatty acids [23]. To add further context to these differences in
findings, it is important to consider ancestral variations in the
TABLE 3
MetS components by treatment allocation and maternal genotype of SNP rs17460

Treatment group

Placebo DHA
N ¼ 154 N ¼ 160

Glucose (mg/dL) 88.2 (86.9, 89.5) 87.3 (86.0, 88.6)
HDL (mg/dL) 46.9 (45.1, 48.6) 46.0 (44.3, 47.8)
Triglycerides (mg/dL) 104 (94.3, 113) 111 (101.7, 120)
SBP (mmHg) 103 (101, 104) 102 (101, 104)
BMI-z score 0.64 (0.43, 0.85) 0.69 (0.49, 0.91)
MetS score -0.01 (-0.10, 0.07) 0.01 (-0.08, 0.09)

Values presented are adjusted means (95% CI).
SBP, systolic blood pressure; MetS, metabolic syndrome.
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distribution of FADS genotypes. Most studies assessing the role of
maternal and offspring FADS genes in child health have been con-
ducted in European populations [56, 57]. However, Native American
and Mexican populations have a greater proportion of carriers of
alleles associated with slower conversion of precursors, along with
diets high in n-6 PUFAs and low in n-3 LC-PUFAs [5, 58]. Targeting
provision of preformed LC-PUFAs to these populations may be
particularly important. Overall, our findings reinforce the potential
need for targeted interventions and inclusion of genotype informa-
tion in the design and interpretation of supplementation trials to
optimize benefit-risk ratios, particularly in the clinical nutrition
setting. However, additional research is needed to reproduce these
findings, confirm whether mother-offspring dyads with specific
maternal genetic profiles and/or nutritional statuses benefit more
from prenatal DHA supplementation, and determine whether it will
ever be feasible to utilize genetic information in the design of public
health interventions.

Several limitations should be acknowledged when interpreting our
findings. First, selection bias may influence the generalizability of our
results. The offspring in our study sample (32% of the birth cohort)
tended to have mothers who were older and had higher BMI and
household SES at study enrollment relative to those lost to follow-up,
2 (n ¼ 314).

Maternal genotype

CC TC TT
N ¼ 127 N ¼ 143 N ¼ 44

86.6 (85.1, 88.1) 88.3 (87.0, 89.6) 89.0 (86.6, 91.4)
45.8 (43.8, 47.7) 46.5 (44.7, 48.2) 48.4 (45.2, 51.6)
113 (102.7, 123) 104 (94.2, 113) 103 (85.5, 120)
103 (101.6, 105) 102 (100.5, 103) 102 (99.1, 104)
0.88 (0.65, 1.12) 0.55 (0.22, 0.76) 0.48 (0.08, 0.87)
0.06 (-0.03, 0.16) -0.04 (-0.12, 0.05) -0.07 (-0.22, 0.08)



FIGURE 3. Effect modification by maternal SNP rs174602 on the impact of DH
(P-interaction ¼ 0.10); B) BMI z-score (P-interaction ¼ 0.14); C) triglycerides (P-
glucose (P-interaction ¼ 0.43). Values are contrast-specific mean differences (95%
the interaction between FADS2 single nucleotide polymorphism rs174602 and su
measurement, maternal SES, BMI, parity and age at trial enrollment (n ¼ 314
blood pressure.

FIGURE 2. Effect modification by maternal SNP rs174602 on offspring
MetS Score (P-interaction ¼ 0.001). Values are contrast-specific mean dif-
ferences (95% CI) between DHA and placebo groups from generalized linear
models testing the interaction between FADS2 single nucleotide poly-
morphism rs174602 and supplementation group on MetS score adjusted for
child sex and age at measurement, maternal SES, BMI, parity and age at trial
enrollment (n ¼ 314). MetS, metabolic syndrome; NS, not significant; SNP,
single nucleotide polymorphism.
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but these values did not differ by prenatal treatment group or maternal
genotype. Given the high loss to follow-up, sample sizes were limited,
which may have contributed to the nonsignificant findings in the TT
group. Additionally, cardiometabolic health can be influenced by many
factors over the life course, starting with prenatal and early life factors
(e.g., maternal BMI during pregnancy, birth weight, infant feeding
practices). However, lifestyle factors over childhood, including diet,
physical activity, and maturation, may be equally important in deter-
mining an individual’s cardiometabolic risk [59]. Although there were
no differences in maternal characteristics at baseline and offspring
characteristics at birth by treatment group or genotype, we did observe
differences in diet at age 11 y. Total PUFA intake differed by treatment
group, and MUFA and saturated fat intake differed by genotype.
However, when interaction between treatment and genotype was
considered, no differences in diet were observed. Although these dif-
ferences may be due to chance, we performed a sensitivity analysis
additionally adjusting for PUFAs, MUFAs, and saturated fat, but effect
estimates were not attenuated. There is potential bias related to the
focus of this analysis on an SNP we have previously shown to be
associated with birth weight; however, our findings remained signifi-
cant even after adjusting for birth weight (i.e., the differences observed
were not mediated by the effects of the interaction on birth weight).

Although PCA is a powerful dimensionality-reduction tool that
allows us to maximize power by reducing the number of tested
outcomes, loading coefficients of individual cardiometabolic factors
A supplementation on offspring MetS components, including A) HDL
interaction ¼ 0.03); D) systolic blood pressure (P-interaction ¼ 0.01); and E)
CI) between DHA and placebo groups from generalized linear models testing
pplementation group on MetS components adjusted for child sex and age at
). SNP, single nucleotide polymorphism; TGs, triglycerides; SBP, systolic
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from PCA are only applicable to the population from which they are
derived. Dietary data were collected via single 24-h recall and may
be subject to recall bias. As the trial was not originally designed to
assess offspring cardiometabolic health, sample sizes are small, and
there may be limited statistical power to detect differences by
treatment group or genotype. Additionally, although plasma fatty
acid concentrations were available in a small subset of the original
birth cohort (n ¼ 75), they were not included in the current manu-
script due to small sample sizes. Future work should focus on
identifying reliable markers of fatty acid status, which can poten-
tially be used as a proxy for genotype. It is unclear whether the
strong interaction observed with maternal genotype of SNP
rs174602 is due to its high minor allele frequency in this sample
(0.37) or because it is a functional SNP. To our knowledge, no
biological function has been established for this SNP; it is, therefore,
likely just a marker, not the causal variant. Further work is needed
across larger, diverse datasets to reproduce these findings and
investigate underlying biological mechanisms. Finally, although we
show the possible importance of maternal FADS genotype in
directing supplementation strategies, the role of offspring genotype
remains unclear. Future work in adequately powered studies should
incorporate offspring genotype information to elucidate this complex
relationship.

Strengths of this study include the double-blind RCT design, high
compliance to the prenatal intervention, extensive characterization of
mothers and children throughout the trial and follow-up period, and
availability of genetic information. Furthermore, our study participants
were representative of a population with low dietary intakes of pre-
formed DHA, high dietary intakes of n-6 fatty acids, and a high
prevalence of alleles associated with lower conversion of precursor
PUFAs into LC-PUFAs. Data collection and laboratory assays were
standardized, validated, and conducted by trained personnel. The age at
follow-up offers a stable time for lipid assessment, as current guidelines
promote universal screening of lipids in children aged 9 to 11 y to
establish baseline cardiometabolic risk.

In summary, we showed that the effect of prenatal DHA supple-
mentation on offspring MetS score at the age of 11 y differed by
maternal FADS2 SNP rs174602. Population differences in FADS ge-
notypes and diet may partially explain mixed results observed across
prenatal DHA supplementation trials. However, given the large vari-
ation in genotype distributions across populations, this work should be
reproduced in larger, independent cohorts. These findings further
support the need to incorporate genetic analysis of FADS poly-
morphisms in DHA supplementation trials and may ultimately help
guide the development of targeted supplementation recommendations
early in the life course to improve cardiometabolic health in the clinical
setting.
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